×

Stratified manifold of quantum states, actions of the complex special linear group. (English) Zbl 1415.81013

Summary: We review the geometry of the space of quantum states \(\mathcal{S}(\mathcal{H})\) of a finite-level quantum system with Hilbert space \(\mathcal{H}\) from a group-theoretical point of view. This space carries two stratifications generated by the action of two different Lie groups, namely, the special unitary group \(\mathcal{SU}(\mathcal{H})\) and its complexification \(\mathcal{SL}(\mathcal{H})\), the complex special linear group. A stratum of the stratification generated by \(\mathcal{SU}(\mathcal{H})\) is composed of isospectral states, that is, density operators with the same spectrum. A stratum of the stratification generated by \(\mathcal{SL}(\mathcal{H})\) is composed of quantum states with the same rank.
We prove that on every submanifold of isospectral quantum states there is also a canonical left action of \(\mathcal{SL}(\mathcal{H})\) which is related with the canonical Kähler structure on isospectral quantum states. The fundamental vector fields of this \(\mathcal{SL}(\mathcal{H})\)-action are divided into Hamiltonian and gradient vector fields. The former give rise to invertible maps on \(\mathcal{S}\) that preserve the von Neumann entropy and the convex structure of \(\mathcal{S}(\mathcal{H})\), while the latter give rise to invertible maps on \(\mathcal{S}(\mathcal{H})\) that preserve the von Neumann entropy but not the convex structure of \(\mathcal{S}(\mathcal{H})\).
A similar decomposition is given for the fundamental vector fields of the \(\mathcal{SL}(\mathcal{H})\)-action generating the stratification of \(\mathcal{S}(\mathcal{H})\) into manifolds of quantum states with the same rank. However, in this case, the gradient vector fields preserve the rank but do not preserve entropy. Finally, some comments on multipartite quantum systems are made, and it is proved that the sets of product states of a multipartite quantum system are homogeneous manifolds for the local action of the complex special linear group associated with the partition.

MSC:

81P16 Quantum state spaces, operational and probabilistic concepts
81P40 Quantum coherence, entanglement, quantum correlations
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81Q70 Differential geometric methods, including holonomy, Berry and Hannay phases, Aharonov-Bohm effect, etc. in quantum theory

References:

[1] Ashtekar, A.; Schilling, T. A., (Harvey, A., On Einstein’s Path: Essays in Honor of Engelbert Schucking (1999), Springer-Verlag: Springer-Verlag New York), 23-65 · Zbl 0976.53088
[2] Cantoni, V., Comm. Math. Phys., 44, 125-128 (1975)
[3] Cantoni, V., Comm. Math. Phys., 56, 189-193 (1977) · Zbl 0374.53016
[4] Cariñena, J. F.; Clemente-Gallardo, J.; Marmo, G., Theoret. Math. Phys., 152, 1, 894-903 (2007) · Zbl 1134.81386
[5] Chruściński, D.; Marmo, G., Open Syst. Inf. Dyn., 16, 2 and 3, 155-177 (2009) · Zbl 1188.81109
[6] Ciaglia, F. M.; Ibort, A.; Marmo, G., Int. J. Quantum Inf., 15, 8 (2017), 1740007-14 · Zbl 1397.81030
[7] Cirelli, R.; Lanzavecchia, P.; Mania, A., J. Phys. A, 16, 16, 3829-3835 (1983) · Zbl 0537.46056
[8] Cirelli, R.; Mania, A.; Pizzocchero, L., J. Math. Phys., 31, 12, 2891-2903 (1990) · Zbl 0850.70206
[9] Ercolessi, E.; Marmo, G.; Morandi, G., Riv. Nuovo Cimento, 33, 401-590 (2010)
[10] Grabowski, J.; Kuś, M.; Marmo, G., Open Syst. Inf. Dyn., 14, 4, 355-370 (2007) · Zbl 1137.81005
[11] Kibble, T. W.B., Comm. Math. Phys., 65, 2, 189-201 (1979) · Zbl 0412.58006
[12] Marmo, G.; Scolarici, G.; Simoni, A.; Ventriglia, F., Int. J. Geom. Methods Modern Phys., 2, 127-145 (2005) · Zbl 1081.81069
[13] Ay, N.; Tuschmann, W., J. Math. Phys., 44, 4, 1512-1518 (2003) · Zbl 1062.81015
[14] Ciaglia, F. M.; Di Cosmo, F.; Felice, D.; Mancini, S.; Marmo, G.; Pérez-Pardo, J. M., Open Syst. Inf. Dyn., 25, 1 (2018), 1850005-14 · Zbl 1391.81042
[15] Ciaglia, F. M.; Di Cosmo, F.; Laudato, M.; Marmo, G.; Mele, G.; Ventriglia, F.; Vitale, P., Ann. Physics, 395, 238-274 (2018) · Zbl 1394.81053
[16] Facchi, P.; Kulkarni, R.; Man’ko, V. I.; Marmo, G.; Sudarshan, E. C.G.; Ventriglia, F., Phys. Lett. A, 374, 48, 4801-4803 (2010) · Zbl 1238.81013
[17] Laudato, M.; Marmo, G.; Mele, G.; Ventriglia, F.; Vitale, P., J. Phys. A, 51, 5 (2018), 055302-17 · Zbl 1387.81117
[18] Man’ko, V. I.; Marmo, G.; Ventriglia, F.; Vitale, P., J. Phys. A, 50, 302-335 (2016)
[19] Morozowa, E. A.; Cencov, N. N., J. Sov. Math., 56, 5, 2648-2669 (1991) · Zbl 0734.60004
[20] Petz, D., Linear Algebra Appl., 244, 81-96 (1996) · Zbl 0856.15023
[21] Wootters, W. K., Phys. Rev. D, 23, 2, 357-362 (1981)
[22] Cariñena, J. F.; Clemente-Gallardo, J.; Jover-Galtier, J. A.; Marmo, G., J. Phys. A, 50, 36 (2017), 365301-30 · Zbl 1376.81008
[23] Chruściński, D.; Jamiołlkowski, A., Geometric Phases in Classical and Quantum Mechanics (2004), Birkhäuser: Birkhäuser Boston · Zbl 1075.81002
[24] Chruściński, D.; Pascazio, S., Open Syst. Inf. Dyn., 24, 3 (2017), 1740001-20 · Zbl 1377.81081
[25] Ciaglia, F. M.; Di Cosmo, F.; Ibort, A.; Laudato, M.; Marmo, G., Open Syst. Inf. Dyn., 24, 3 (2017), 1740003-38 · Zbl 1377.81082
[26] Ciaglia, F. M.; Di Cosmo, F.; Ibort, A.; Marmo, G., Ann. Physics, 385, 769-781 (2017) · Zbl 1372.81064
[27] Ciaglia, F. M.; Di Cosmo, F.; Laudato, M.; Marmo, G., Int. J. Geom. Methods Modern Phys., 14, 8 (2017), 1740003-39 · Zbl 1373.81254
[28] Cirelli, R.; Pizzocchero, L., Nonlinearity, 3, 4, 1057-1080 (1990) · Zbl 0718.58028
[29] Aniello, P.; Clemente-Gallardo, J.; Marmo, G.; Volkert, G. F., Int. J. Geom. Methods Mod. Phys., 7, 3, 485-503 (2010) · Zbl 1190.81005
[30] Bengtsson, I.; Zyczkowski, K., Geometry of Quantum States: An Introduction to Quantum Entanglement (2006), Cambridge University Press: Cambridge University Press New York · Zbl 1146.81004
[31] Chirco, G.; Mele, F. M.; Oriti, D.; Vitale, P., Phys. Rev. D, 97, 2 (2018), 046015-29
[32] Grabowski, J.; Kuś, M.; Marmo, G., J. Phys. A: Math. Gen., 38, 47, 10217-10244 (2005) · Zbl 1085.81017
[33] Grabowski, J.; Kuś, M.; Marmo, G., Open Syst. Inf. Dyn., 13, 04, 343-362 (2006) · Zbl 1110.81044
[34] Huckleberry, A.; Kuś, M.; Sawicki, A., J. Math. Phys., 54, 2 (2013), 022202-19 · Zbl 1280.81023
[35] Sawicki, A.; Huckleberry, A.; Kuś, M., Comm. Math. Phys., 305, 441-468 (2011) · Zbl 1223.81070
[36] Sawicki, A.; Oszmaniec, M.; Kuś, M., Rev. Math. Phys., 26, 3 (2014), 1450004-39 · Zbl 1290.81011
[37] Ciaglia, F. M.; Ibort, A.; Marmo, G., (Differential Geometry of Quantum States, Observables and Evolution. Differential Geometry of Quantum States, Observables and Evolution, UMI Lectures (2018)), in press · Zbl 1391.81016
[38] Gurvits, L.; Barnum, H., Phys. Rev. A, 68, 4 (2003)
[39] Zyczkowski, K.; Horodecki, P.; Sanpera, A.; Lewenstein, M., Phys. Rev. A, 58, 2 (1998)
[40] Marsden, J. E.; Ratiu, T., Introduction To Mechanics and Symmetry (1999), Springer-Verlag: Springer-Verlag New York · Zbl 0933.70003
[41] Abraham, R.; Marsden, J. E.; Ratiu, T., Manifolds, Tensor Analysis, and Applications (2012), Springer-Verlag: Springer-Verlag New York · Zbl 0875.58002
[42] Abraham, R.; Marsden, J. E., Foundations of Mechanics (1978), Addison-Wesley: Addison-Wesley Menlo Park, CA · Zbl 0393.70001
[43] Weinstein, A., J. Differential Geom., 18, 523-557 (1983) · Zbl 0524.58011
[44] Weinstein, A., J. Differential Geom., 22 (1985), 255-255 · Zbl 0596.58018
[45] Morandi, G.; Ferrario, C.; Lo Vecchio, G.; Marmo, G.; Rubano, C., Phys. Rep., 188, 3 and 4, 147-284 (1990) · Zbl 1211.58008
[46] Nirenberg, L.; Newlander, A., Ann. of Math., 65, 3, 391-404 (1957) · Zbl 0079.16102
[47] Ercolessi, E.; Marmo, G.; Morandi, G.; Mukunda, N., Internat. J. Modern Phys. A, 16, 31, 5007-5032 (2001) · Zbl 1026.81019
[48] Mackenzie, K. C., General Theory of Lie Groupoids and Lie Algebroids (2005), Cambridge University Press · Zbl 1078.58011
[49] Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K., Rev. Modern Phys., 81, 2, 865-942 (2009) · Zbl 1205.81012
[50] Leinaas, J. M.; Myrheim, J.; Ovrum, E., Phys. Rev. A, 74, 1 (2006)
[51] Samuel, J.; Shivam, K.; Sinha, S., Ann. Phys., 396, 159-172 (2018) · Zbl 1398.81031
[52] Sanpera, A.; Bruss, D.; Lewenstein, M., Phys. Rev. A, 63, 5 (2001)
[53] Terhal, B.; Horodecki, P., Phys. Rev. A, 61, 4 (2000)
[54] Verstraete, F.; Audenaert, K.; De Moor, B., Phys. Rev. A, 64, 1 (2001)
[55] Gabach Clément, M. E.; Raggio, G. A., J. Phys. A: Math. Gen., 39, 29 (2006) · Zbl 1095.81008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.