×

Propagation, proppant transport and the evolution of transport properties of hydraulic fractures. (English) Zbl 1415.76621

Summary: Hydraulic fracturing is a widely used method for well stimulation to enhance hydrocarbon recovery. Permeability, or fluid conductivity, of the hydraulic fracture is a key parameter to determine the fluid production rate, and is principally conditioned by fracture geometry and the distribution of the encased proppant. A numerical model is developed to describe proppant transport within a propagating blade-shaped fracture towards defining the fracture conductivity and reservoir production after fracture closure. Fracture propagation is formulated based on the PKN-formalism coupled with advective transport of an equivalent slurry representing a proppant-laden fluid. Empirical constitutive relations are incorporated to define rheology of the slurry, proppant transport with bulk slurry flow, proppant gravitational settling, and finally the transition from Poiseuille (fracture) flow to Darcy (proppant pack) flow. At the maximum extent of the fluid-driven fracture, as driving pressure is released, a fracture closure model is employed to follow the evolution of fracture conductivity with the decreasing fluid pressure. This model is capable of accommodating the mechanical response of the proppant pack, fracture closure of potentially contacting rough surfaces, proppant embedment into fracture walls, and most importantly flexural displacement of the unsupported spans of the fracture. Results show that reduced fluid viscosity increases the length of the resulting fracture, while rapid leak-off decreases it, with both characteristics minimizing fracture width over converse conditions. Proppant density and size do not significantly influence fracture propagation. Proppant settling ensues throughout fracture advance, and is accelerated by a lower viscosity fluid or greater proppant density or size, resulting in accumulation of a proppant bed at the fracture base. ‘Screen-out’ of proppant at the fracture tip can occur where the fracture aperture is only several times the diameter of the individual proppant particles. After fracture closure, proppant packs comprising larger particles exhibit higher conductivity. More importantly, high-conductivity flow channels are necessarily formed around proppant banks due to the flexural displacement of the fracture walls, which offer preferential flow pathways and significantly influence the distribution of fluid transport. Higher compacting stresses are observed around the edge of proppant banks, resulting in greater depths of proppant embedment into the fracture walls and/or an increased potential for proppant crushing.

MSC:

76S05 Flows in porous media; filtration; seepage
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76T20 Suspensions
Full Text: DOI

References:

[1] Adachi, J.; Siebrits, E.; Peirce, A.; Desroches, J., Computer simulation of hydraulic fractures, Intl J. Rock Mech. Min. Sci., 44, 739-757, (2007) · doi:10.1016/j.ijrmms.2006.11.006
[2] Adachi, J. I.; Detournay, E.; Peirce, A. P., Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth across stress barriers, Intl J. Rock Mech. Min. Sci., 47, 625-639, (2010) · doi:10.1016/j.ijrmms.2010.03.008
[3] Adachi, J. I.; Peirce, A. P., Asymptotic analysis of an elasticity equation for a finger-like hydraulic fracture, J. Elast., 90, 43-69, (2008) · Zbl 1161.74019 · doi:10.1007/s10659-007-9122-4
[4] Bandis, S. C.; Lumsden, A. C.; Barton, N. R., Fundamentals of rock joint deformation, Intl J. Rock Mech. Min. Sci., 20, 249-268, (1983) · doi:10.1016/0148-9062(83)90595-8
[5] Barton, N.; Bandis, S.; Bakhtar, K., Strength, deformation and conductivity coupling of rock joints, Intl J. Rock Mech. Min. Sci., 22, 121-140, (1985) · doi:10.1016/0148-9062(85)93227-9
[6] Boyer, F.; Guazzelli, É.; Pouliquen, O., Unifying suspension and granular rheology, Phys. Rev. Lett., 107, 1-5, (2011) · doi:10.1103/PhysRevLett.107.188301
[7] Carman, P. C., Fluid flow through granular beds, Trans. Chem. Engng, 15, 150-166, (1937)
[8] Cipolla, C. L.; Lolon, E. P.; Mayerhofer, M. J.; Warpinski, N. R., The effect of proppant distribution and un-propped fracture conductivity on well performance in unconventional gas reservoirs, SPE Hydraulic Fracturing Technology Conference, 1-10, (2009)
[9] Detournay, E., Mechanics of hydraulic fractures, Annu. Rev. Fluid Mech., 48, 311-339, (2016) · Zbl 1356.74181 · doi:10.1146/annurev-fluid-010814-014736
[10] Detournay, E.; Cheng, A. H.-D.; Mclennan, J. D., A poroelastic PKN hydraulic fracture model based on an explicit moving mesh algorithm, J. Energy Res. Technol., 112, 224-230, (1990) · doi:10.1115/1.2905762
[11] Dontsov, E. V.; Peirce, A. P., Slurry flow, gravitational settling and a proppant transport model for hydraulic fractures, J. Fluid Mech., 760, 567-590, (2014) · doi:10.1017/jfm.2014.606
[12] Dontsov, E. V.; Peirce, A. P., A Lagrangian approach to modelling proppant transport with tip screen-out in KGD hydraulic fractures, Rock Mech. Rock Engng, 48, 2541-2550, (2015) · doi:10.1007/s00603-015-0835-6
[13] Dontsov, E. V.; Peirce, A. P., An enhanced pseudo-3D model for hydraulic fracturing accounting for viscous height growth, non-local elasticity, and lateral toughness, Engng Fract. Mech., 142, 116-139, (2015) · doi:10.1016/j.engfracmech.2015.05.043
[14] Dontsov, E. V.; Peirce, A. P., Proppant transport in hydraulic fracturing: crack tip screen-out in KGD and P3D models, Intl J. Solids Struct., 63, 206-218, (2015) · doi:10.1016/j.ijsolstr.2015.02.051
[15] Dontsov, E. V.; Peirce, A. P., Comparison of toughness propagation criteria for blade-like and pseudo-3D hydraulic fractures, Engng Fract. Mech., 160, 238-247, (2016) · doi:10.1016/j.engfracmech.2016.04.023
[16] Economides, M. J.; Nolte, K. G., Reservoir Stimulation, 18, (2000), Wiley
[17] Frank, U.; Barkley, N., Remediation of low permeability subsurface formations by fracturing enhancement of soil vapor extraction, J. Hazard. Mater., 40, 191-201, (1995) · doi:10.1016/0304-3894(94)00069-S
[18] Greetesma, J.; De Klerk, F., A rapid method of predicting width and extent of hydraulic induced fractures, J. Petrol. Tech., 21, 1571-1581, (1969) · doi:10.2118/2458-PA
[19] Gu, M.; Dao, E.; Mohanty, K. K., Investigation of ultra-light weight proppant application in shale fracturing, Fuel, 150, 191-201, (2015) · doi:10.1016/j.fuel.2015.02.019
[20] Gu, M.; Mohanty, K. K., Effect of foam quality on effectiveness of hydraulic fracturing in shales, Intl J. Rock Mech. Min. Sci., 70, 273-285, (2014) · doi:10.1016/j.ijrmms.2014.05.013
[21] Jing, L., A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering, Intl J. Rock Mech. Min. Sci., 40, 283-353, (2003) · doi:10.1016/S1365-1609(03)00013-3
[22] Khanna, A.; Neto, L. B.; Kotousov, A., Effect of residual opening on the inflow performance of a hydraulic fracture, Intl J. Engng Sci., 74, 80-90, (2014) · doi:10.1016/j.ijengsci.2013.08.012
[23] Khristianovic, S. A.; Zheltov, Y. P., Formation of vertical fractures by means of highly viscous liquid, Proceeding 4th World Pet. Congr. 5, Rome, 579-586, (1955)
[24] Kovalyshen, Y.; Detournay, E., A reexamination of the classical PKN model of hydraulic fracture, Transp. Porous Med., 81, 317-339, (2010) · doi:10.1007/s11242-009-9403-4
[25] Kozeny, J., Uber Kapillare Leitung der Wasser in Boden, R. Acad. Sci. Vienna, Proc. Cl. I, 136, 271-306, (1927)
[26] Lecampion, B.; Bunger, A.; Zhang, X., Numerical methods for hydraulic fracture propagation: a review of recent trends, J. Nat. Gas Sci. Eng., 49, 66-83, (2018) · doi:10.1016/j.jngse.2017.10.012
[27] Legarth, B.; Huenges, E.; Zimmermann, G., Hydraulic fracturing in a sedimentary geothermal reservoir: results and implications, Intl J. Rock Mech. Min. Sci., 42, 1028-1041, (2005) · doi:10.1016/j.ijrmms.2005.05.014
[28] Lemmon, E. W.
[29] Liu, Y.; Leung, J. Y.; Chalaturnyk, R.; Virues, C. J. J.; Ulc, N. E., Fracturing fluid distribution in shale gas reservoirs due to fracture closure, proppant distribution and gravity segregation, SPE Unconventional Resources Conference, (2017)
[30] Neto, L. B.; Khanna, A.; Kotousov, A., Conductivity and performance of hydraulic fractures partially filled with compressible proppant packs, Intl J. Rock Mech. Min. Sci., 74, 1-9, (2015) · doi:10.1016/j.ijrmms.2014.11.005
[31] Neto, L. B.; Kotousov, A., Residual opening of hydraulic fractures filled with compressible proppant, Intl J. Rock Mech. Min. Sci., 61, 223-230, (2013) · doi:10.1016/j.ijrmms.2013.02.012
[32] Neto, L. B.; Kotousov, A., On the residual opening of hydraulic fractures, Intl J. Fract., 181, 127-137, (2013) · doi:10.1007/s10704-013-9828-1
[33] Nordgren, R. P., Propagation of a vertical hydraulic fracture, Soc. Petrol. Engng J., 12, 306-314, (1972) · doi:10.2118/3009-PA
[34] Ouyang, S.; Carey, G. F.; Yew, C. H., An adaptive finite element scheme for hydraulic fracturing with proppant transport, Intl J. Numer. Meth. Fluids, 24, 645-670, (1997) · Zbl 0889.76037 · doi:10.1002/(SICI)1097-0363(19970415)24:7<645::AID-FLD458>3.0.CO;2-Z
[35] Perkins, T. K.; Kern, L. R., Widths of hydraulic fractures, J. Petrol. Tech., 13, 937-949, (1961) · doi:10.2118/89-PA
[36] Rahman, M. M.; Rahman, M. K., A review of hydraulic fracture models and development of an improved pseudo-3D model for stimulating tight oil/gas sand, Energy Sources, Part A Recover. Util. Environ. Eff., 32, 1416-1436, (2010) · doi:10.1080/15567030903060523
[37] Shiozawa, S.; Mcclure, M., Simulation of proppant transport with gravitational settling and fracture closure in a three-dimensional hydraulic fracturing simulator, J. Petrol. Sci. Engng, 138, 298-314, (2016) · doi:10.1016/j.petrol.2016.01.002
[38] Tada, H.; Paris, P. C.; Irwin, G. R., Two-dimensional stress solutions for various configurations with cracks, The Stress Analysis of Cracks Handbook, (2000), ASME Press · doi:10.1115/1.801535
[39] Wang, J.; Elsworth, D., Role of proppant distribution on the evolution of hydraulic fracture conductivity, J. Petrol. Sci. Engng, 166, 249-262, (2018) · doi:10.1016/j.petrol.2018.03.040
[40] Wang, J.; Elsworth, D.; Denison, M. K., Hydraulic fracturing with leakoff in a pressure-sensitive dual porosity medium, Intl J. Rock Mech. Min. Sci., 107, 55-68, (2018) · doi:10.1016/j.ijrmms.2018.04.042
[41] Wang, J.; Elsworth, D.; Wu, Y.; Liu, J.; Zhu, W.; Liu, Y., The influence of fracturing fluids on fracturing processes: a comparison between water, oil and SC-CO2, Rock Mech. Rock Eng., 51, 299-313, (2018) · doi:10.1007/s00603-017-1326-8
[42] Warpinski, N., Stress amplification and arch dimensions in proppant beds deposited by waterfracs, SPE Prod. Oper., 25, 1-17, (2010)
[43] Yu, W.; Zhang, T.; Du, S.; Sepehrnoori, K., Numerical study of the effect of uneven proppant distribution between multiple fractures on shale gas well performance, Fuel, 142, 189-198, (2015) · doi:10.1016/j.fuel.2014.10.074
[44] Zhang, F.; Dontsov, E.; Mack, M., Fully coupled simulation of a hydraulic fracture interacting with natural fractures with a hybrid discrete-continuum method, Intl J. Numer. Anal. Meth. Geomech., 41, 1430-1452, (2017) · doi:10.1002/nag.2682
[45] Zhang, G.; Li, M.; Gutierrez, M., Numerical simulation of proppant distribution in hydraulic fractures in horizontal wells, J. Nat. Gas Sci. Engng, 48, 157-168, (2017) · doi:10.1016/j.jngse.2016.10.043
[46] Zhang, Q.; Ma, D.; Wu, Y.; Meng, F., Coupled thermal-gas-mechanical (TGM) model of tight sandstone gas wells, J. Geophys. Engng, 15, 1743-1752, (2018) · doi:10.1088/1742-2140/aabab4
[47] Zoback, M. D.; Rummel, F.; Jung, R.; Raleigh, C. B., Laboratory hydraulic fracturing experiments in intact and pre-fractured rock, Intl J. Rock Mech. Min. Sci., 14, 49-58, (1977) · doi:10.1016/0148-9062(77)90196-6
[48] Zolfaghari, N.; Dontsov, E.; Bunger, A. P., Solution for a plane strain rough-walled hydraulic fracture driven by turbulent fluid through impermeable rock, Intl J. Numer. Anal. Meth. Geomech., 42, 587-617, (2018) · doi:10.1002/nag.2755
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.