×

General formalism for a reduced description and modelling of momentum and energy transfer in turbulence. (English) Zbl 1415.76247

Summary: Based on hierarchies of filter lengths, the large eddy decomposition and the related subgrid stresses are recognized to represent generalized central moments for the study and modelling of the different modes composing turbulence. In particular, the subgrid stresses and the subgrid dissipation are shown to be alternative observables for quantitatively assessing the scale-dependent properties of momentum flux (subgrid stresses) and the energy exchange between the large and small scales (subgrid dissipation). In this work we present a theoretical framework for the study of the subgrid stress and dissipation. Starting from an alternative decomposition of the turbulent stresses, a new formalism for their approximation and understanding is proposed which is based on a tensorial turbulent viscosity. The derived formalism highlights that every decomposition of the turbulent stresses is naturally approximated by a general form of turbulent viscosity tensor based on velocity increments which is then recognized to be a peculiar property of small-scale stresses in turbulence. The analysis in a turbulent channel shows the rich physics of the small-scale stresses which is unveiled by the tensorial formalism and usually missed in scalar approaches. To further exploit the formalism, we also show how it can be used to derive new modelling approaches. The proposed models are based on the second- and third-order inertial properties of the grid element. The basic idea is that the structure of the integration volume for filtering (either implicit or explicit) impacts the anisotropy and inhomogeneity of the filtered-out motions and, hence, this information could be leveraged to improve the prediction of the main unknown features of small-scale turbulence. The formalism provides also a rigorous definition of characteristic lengths for the turbulent stresses, which can be computed in every type of computational elements, thus overcoming the rather elusive definition of filter length commonly employed in more classical models. A preliminary analysis in a turbulent channel shows reasonable results. In order to solve numerical stability issues, a tensorial dynamic procedure for the evolution of the model constants is also developed. The generality of the procedure is such that it can be employed also in more conventional closures.

MSC:

76F02 Fundamentals of turbulence

References:

[1] Abbà, A., Bonaventura, L., Nini, M. & Restelli, M.2015Dynamic models for large eddy simulation of compressible flows with a high order DG method. Comput. Fluids122, 209-222.10.1016/j.compfluid.2015.08.021 · Zbl 1390.76122 · doi:10.1016/j.compfluid.2015.08.021
[2] Abbà, A., Campaniello, D. & Nini, M.2017Filter size definition in anisotropic subgrid models for large eddy simulation on irregular grids. J. Turbul.18 (6), 589-610.10.1080/14685248.2017.1312001 · doi:10.1080/14685248.2017.1312001
[3] Abbà, A., Cercignani, C. & Valdettaro, L.2003Analysis of subgrid scale models. Comput. Maths. Appl.46, 521-535.10.1016/S0898-1221(03)90014-9 · Zbl 1100.76527 · doi:10.1016/S0898-1221(03)90014-9
[4] Bardina, J., Ferziger, J. & Reynolds, W.1980 Improved subgrid scale models for large eddy simulation. AIAA Paper 801357.
[5] Bardina, J., Ferziger, J. & Reynolds, W.1983a Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows. Tech. Rep. NASA NCC 2-15.
[6] Bardina, J., Ferziger, J. H. & Reynolds, W. C.1983b Improved turbulence models based on LES of homogeneous incompressible turbulent flows. Tech. Rep. TF-19. Thermosciences Division, Department of Mechanical Engineering, Stanford University.
[7] Borue, V. & Orszag, S. A.1998Local energy flux and subgrid-scale statistics in three-dimensional turbulence. J. Fluid Mech.366, 1-31.10.1017/S0022112097008306 · Zbl 0924.76035 · doi:10.1017/S0022112097008306
[8] Carati, D. & Cabot, W.1996Anisotropic eddy viscosity models. Proceedings of Summer School Program, Center for Turbulence Research, pp. 249-259.
[9] Cerutti, S. & Meneveau, C.1998Intermittency and relative scaling of subgrid scale energy dissipation in isotropic turbulence. Phys. Fluids10, 928-937.10.1063/1.869615 · Zbl 1185.76660 · doi:10.1063/1.869615
[10] Chen, S., Ecke, R. E., Eyink, G. L., Rivera, M., Wan, M. & Xiao, Z.2006Physical mechanism of the two-dimensional inverse energy cascade. Phys. Rev. Lett.96 (8), 084502.
[11] Cimarelli, A. & De Angelis, E.2012Anisotropic dynamics and sub-grid energy transfer in wall-turbulence. Phys. Fluids24, 015102.10.1063/1.3675626 · Zbl 1308.76150 · doi:10.1063/1.3675626
[12] Cimarelli, A. & De Angelis, E.2014The physics of energy transfer toward improved subgrid-scale models. Phys. Fluids26, 055103.10.1063/1.4871902 · doi:10.1063/1.4871902
[13] Cimarelli, A., De Angelis, E. & Casciola, C. M.2013Paths of energy in turbulent channel flows. J. Fluid Mech.715, 436-451.10.1017/jfm.2012.528S0022112012005289 · Zbl 1284.76193 · doi:10.1017/jfm.2012.528
[14] Cimarelli, A., De Angelis, E., Jiménez, J. & Casciola, C. M.2016Cascades and wall-normal fluxes in turbulent channel flows. J. Fluid Mech.796, 417-436.10.1017/jfm.2016.275S0022112016002755 · Zbl 1462.76105 · doi:10.1017/jfm.2016.275
[15] Cimarelli, A., De Angelis, E., Schlatter, P., Brethouwer, G., Talamelli, A. & Casciola, C. M.2015Sources and fluxes of scale energy in the overlap layer of wall turbulence. J. Fluid Mech.771, 407-423.10.1017/jfm.2015.182 · doi:10.1017/jfm.2015.182
[16] Clark, R. A., Ferziger, J. H. & Reynolds, W. C.1979Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech.91, 1-16.10.1017/S002211207900001XS002211207900001X · Zbl 0394.76052 · doi:10.1017/S002211207900001X
[17] Colosqui, C. & Oberai, A.2008Generalized Smagorinsky model in physical space. Comput. Fluids37, 207-217.10.1016/j.compfluid.2007.09.002 · Zbl 1237.76056 · doi:10.1016/j.compfluid.2007.09.002
[18] Domaradzki, J. A., Teaca, B. & Carati, D.2009Locality properties of the energy flux in turbulence. Phys. Fluids21 (2), 025106.10.1063/1.3081558 · Zbl 1183.76185 · doi:10.1063/1.3081558
[19] Domaradzki, J. A., Liu, W., Härtel, C. & Kleiser, L.1994Energy transfer in numerically simulated wall-bounded turbulent flows. Phys. Fluids6, 1583-1599.10.1063/1.868272 · Zbl 0830.76041 · doi:10.1063/1.868272
[20] Eyink, G. L.2006Multi-scale gradient expansion of the turbulent stress tensor. J. Fluid Mech.549, 159-190.10.1017/S0022112005007895S0022112005007895 · doi:10.1017/S0022112005007895
[21] Farhat, C., Rajasekharan, A. & Koobus, B.2006A dynamic variational multiscale method for large eddy simulations on unstructured meshes. Comput. Meth. Appl. Mech. Engng195, 1667-1691.10.1016/j.cma.2005.05.045 · Zbl 1116.76046 · doi:10.1016/j.cma.2005.05.045
[22] Germano, M1986A proposal for a redefinition of the turbulent stresses in the filtered Navier-Stokes equations. Phys. Fluids29 (7), 2323-2324.10.1063/1.865568 · Zbl 0623.76060 · doi:10.1063/1.865568
[23] Germano, M.1992Turbulence: the filtering approach. J. Fluid Mech.238, 325-336.10.1017/S0022112092001733S0022112092001733 · Zbl 0756.76034 · doi:10.1017/S0022112092001733
[24] Germano, M.2007A direct relation between the filtered subgrid stress and the second order structure function. Phys. Fluids19, 038102. · Zbl 1146.76389
[25] Germano, M.2012The simplest decomposition of a turbulent field. Physica D241 (3), 284-287. · Zbl 1469.76059
[26] Härtel, C., Kleiser, L., Unger, F. & Friedrich, R.1994Subgrid-scale energy transfer in the near-wall region of turbulent flows. Phys. Fluids6, 3130-3143.10.1063/1.868137 · Zbl 0825.76326 · doi:10.1063/1.868137
[27] Horiuti, K.1993A proper velocity scale for modeling subgrid-scale eddy viscosities in large eddy simulation. Phys. Fluids A5 (1), 146-157.10.1063/1.858800 · Zbl 0813.76035 · doi:10.1063/1.858800
[28] John, V. & Kindl, A.2010Numerical studies of finite element variational multiscale methods for turbulent flow simulations. Comput. Meth. Appl. Mech. Engng199, 841-852.10.1016/j.cma.2009.01.010 · Zbl 1406.76029 · doi:10.1016/j.cma.2009.01.010
[29] Kerr, R. M., Domaradzki, J. A. & Barbier, G.1996Small-scale properties of nonlinear interactions and subgrid-scale energy transfer in isotropic turbulence. Phys. Fluids8 (1), 197-208.10.1063/1.868827 · Zbl 1027.76578 · doi:10.1063/1.868827
[30] Knight, D., Zhou, G., Okong’o, N. & Shukla, V.1998 Compressible large eddy simulation using unstructured grids. AIAA Paper 980535.
[31] Leonard, A.1974Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys.18, 237-248.10.1016/S0065-2687(08)60464-1 · doi:10.1016/S0065-2687(08)60464-1
[32] Lu, H. & Porté-Agel, F.2010A modulated gradient model for large-eddy simulation: application to a neutral atmospheric boundary layer. Phys. Fluids22, 015109. · Zbl 1183.76328
[33] Ni, R., Voth, G. A. & Ouellette, N. T.2014Extracting turbulent spectral transfer from under-resolved velocity fields. Phys. Fluids26 (10), 105107.10.1063/1.4898866 · doi:10.1063/1.4898866
[34] Piomelli, U., Cabot, W. H., Moin, P. & Lee, S.1991Subgrid-scale backscatter in turbulent and transitional flows. Phys. Fluids A3 (7), 1766-1771.10.1063/1.857956 · Zbl 0825.76335 · doi:10.1063/1.857956
[35] Piomelli, U., Rohui, A. & Geurts, B.2015A grid-independent length scale for large-eddy simulations. J. Fluid Mech.766, 499-527.10.1017/jfm.2015.29S0022112015000294 · doi:10.1017/jfm.2015.29
[36] Piomelli, U., Yu, Y. & Adrian, R. J.1996Subgrid-scale energy transfer and near-wall turbulence structure. Phys. Fluids8, 215-224.10.1063/1.868829 · Zbl 1023.76554 · doi:10.1063/1.868829
[37] Rivera, M. K., Daniel, W. B., Chen, S. Y. & Ecke, R. E.2003Energy and enstrophy transfer in decaying two-dimensional turbulence. Phys. Rev. Lett.90 (10), 104502.
[38] Rouhi, A., Piomelli, U. & Geurts, B.2016Dynamic subfilter-scale stress model for large-eddy simulations. Phys. Rev. Fluids1 (4), 044401.10.1103/PhysRevFluids.1.044401 · doi:10.1103/PhysRevFluids.1.044401
[39] Sagaut, P.2001Large-Eddy Simulation for Incompressible Flows: An Introduction. Springer.10.1007/978-3-662-04416-2 · Zbl 0964.76002 · doi:10.1007/978-3-662-04416-2
[40] Trias, F. X., Gorobets, A., Silvis, M. H., Verstappen, R. W. C. P. & Oliva, A.2017A new subgrid characteristic length for turbulence simulations on anisotropic grids. Phys. Fluids29 (11), 115109.10.1063/1.5012546 · doi:10.1063/1.5012546
[41] Vollant, A., Balarac, G. & Corre, C.2016A dynamic regularized gradient model of the subgrid-scale stress tensor for large-eddy simulation. Phys. Fluids28, 025114.10.1063/1.4941781 · doi:10.1063/1.4941781
[42] Vreman, B., Guerts, B. & Kuerten, H.1996Large eddy simulation of the temporal mixing layer using the Clark model. Theor. Comput. Fluid Dyn.8, 309-324.10.1007/BF00639698 · Zbl 0898.76045 · doi:10.1007/BF00639698
[43] Vreman, B., Guerts, B. & Kuerten, H.1997Large-eddy simulation of the turbulent mixing layer. J. Fluid Mech.339, 357-390.10.1017/S0022112097005429S0022112097005429 · Zbl 0900.76369 · doi:10.1017/S0022112097005429
[44] Wang, J., Wan, M., Chen, S. & Chen, S.2018Kinetic energy transfer in compressible isotropic turbulence. J. Fluid Mech.841, 581-613.10.1017/jfm.2018.23S002211201800023X · Zbl 1419.76252 · doi:10.1017/jfm.2018.23
[45] Zhou, Y.1993Interacting scales and energy transfer in isotropic turbulence. Phys. Fluids A5 (10), 2511-2524.10.1063/1.858764 · Zbl 0798.76032 · doi:10.1063/1.858764
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.