×

Lagrangian transport by vertically confined internal gravity wavepackets. (English) Zbl 1415.76112

Summary: We examine the flows induced by horizontally modulated, vertically confined (or guided), internal wavepackets in a stratified, Boussinesq fluid. The wavepacket induces both an Eulerian flow and a Stokes drift, which together determine the Lagrangian transport of passive tracers. We derive equations describing the wave-induced flows in arbitrary stable stratification and consider four special cases: a two-layer fluid, symmetric and asymmetric piecewise constant (‘top-hat’) stratification and, more representative of the ocean, exponential stratification. In a two-layer fluid, the Stokes drift is positive everywhere with the peak value at the interface, whereas the Eulerian flow is negative and uniform with depth for long groups. Combined, the net depth-integrated Lagrangian transport is zero. If one layer is shallower than the other, the wave-averaged interface displaces into that layer making the Eulerian flow in that layer more negative and the Eulerian flow in the opposite layer more positive so that the depth-integrated Eulerian transports are offset by the same amount in each layer. By contrast, in continuous stratification the depth-integrated transport due to the Stokes drift and Eulerian flow are each zero, but the Eulerian flow is singular if the horizontal phase speed of the induced flow equals the group velocity of the wavepacket, giving rise to a single resonance in uniform stratification M. E. McIntyre [ibid. 60, 801–811 (1973; Zbl 0269.76011)]. In top-hat stratification, this single resonance disappears, being replaced by multiple resonances occurring when the horizontal group velocity of the wavepacket matches the horizontal phase speed of higher-order modes. Furthermore, if the stratification is not vertically symmetric, then the Eulerian induced flow varies as the inverse squared horizontal wavenumber for shallow waves, the same as for the asymmetric two-layer case. This ‘infrared catastrophe’ also occurs in the case of exponential stratification suggesting significant backward near-surface transport by the Eulerian induced flow for modulated oceanic internal modes. Numerical simulations are performed confirming these theoretical predictions.

MSC:

76B55 Internal waves for incompressible inviscid fluids
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction

Citations:

Zbl 0269.76011

References:

[1] Al-Zanaidi, M. A. & Dore, B. D.1976Some aspects of internal wave motions. Pure Appl. Geophys.114 (3), 403-414.10.1007/BF00876940 · doi:10.1007/BF00876940
[2] Andrews, D. G. & McIntyre, M. E.1978An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech.89, 609-646.10.1017/S0022112078002773 · Zbl 0426.76025 · doi:10.1017/S0022112078002773
[3] van den Bremer, T. S. & Sutherland, B. R.2014The mean flow and long waves induced by two-dimensional internal gravity wavepackets. Phys. Fluids26, 106601.10.1063/1.4899262 · doi:10.1063/1.4899262
[4] van den Bremer, T. S. & Sutherland, B. R.2018The wave-induced flow of internal gravity wavepackets with arbitrary aspect ratio. J. Fluid Mech.834, 385-408.10.1017/jfm.2017.745 · Zbl 1419.76122 · doi:10.1017/jfm.2017.745
[5] van den Bremer, T. S. & Taylor, P. H.2015Estimates of Lagrangian transport by surface gravity wave groups: the effects of finite depth and directionality. J. Geophys. Res.120 (4), 2701-2722.10.1002/2015JC010712 · doi:10.1002/2015JC010712
[6] Bretherton, F. P.1969On the mean motion induced by gravity waves. J. Fluid Mech.36 (4), 785-803.10.1017/S0022112069001984 · Zbl 0175.52805 · doi:10.1017/S0022112069001984
[7] Bühler, O.2014Waves and Mean Flows, 2nd edn. Cambridge University Press.10.1017/CBO9781107478701 · Zbl 1286.86002 · doi:10.1017/CBO9781107478701
[8] Grimshaw, R. H. J.1977The modulation of an internal gravity-wave packet, and the resonance with the mean motion. Stud. Appl. Maths56, 241-266.10.1002/sapm1977563241 · Zbl 0361.76029 · doi:10.1002/sapm1977563241
[9] Grimshaw, R.1981Modulation of an internal gravity wave packet in a stratified shear flow. Wave Motion3 (1), 81-103.10.1016/0165-2125(81)90013-5 · Zbl 0488.76028 · doi:10.1016/0165-2125(81)90013-5
[10] Grimshaw, R. H. J. & Pullin, D. I.1985Stability of finite-amplitude interfacial waves. Part 1. Modulational instability for small-amplitude waves. J. Fluid Mech.160, 297-315.10.1017/S0022112085003494 · Zbl 0614.76020 · doi:10.1017/S0022112085003494
[11] Haney, S. & Young, W. R.2017Radiation of internal waves from groups of surface gravity waves. J. Fluid Mech.829, 280-303.10.1017/jfm.2017.536 · Zbl 1460.76277 · doi:10.1017/jfm.2017.536
[12] Hunt, J. N.1961Interfacial waves of finite amplitude. La Houille Blanche4, 515-531.10.1051/lhb/1961042 · doi:10.1051/lhb/1961042
[13] Keady, G.1971Upstream influence in a two-fluid system. J. Fluid Mech.49 (2), 373-384.10.1017/S0022112071002131 · Zbl 0264.76038 · doi:10.1017/S0022112071002131
[14] Koop, C. G. & Redekopp, L. G.1981The interaction of long and short internal gravity waves: theory and experiment. J. Fluid Mech.111, 367-409.10.1017/S0022112081002425 · doi:10.1017/S0022112081002425
[15] Liu, A. K. & Benney, D. J.1981The evolution of nonlinear wave trains in stratified shear flows. Stud. Appl. Maths64, 247-269.10.1002/sapm1981643247 · Zbl 0481.76030 · doi:10.1002/sapm1981643247
[16] Longuet-Higgins, M. S. & Stewart, R. W.1962Radiation stress and mass transport in gravity waves, with applications to ‘surf beats’. J. Fluid Mech.13, 481-504.10.1017/S0022112062000877 · doi:10.1017/S0022112062000877
[17] Martin, J. P., Rudnick, D. L. & Pinkel, R.2006Spatially broad observations of internal waves in the upper ocean at the Hawaiian Ridge. J. Phys. Oceanogr.36, 1085-1103.10.1175/JPO2881.1 · doi:10.1175/JPO2881.1
[18] McIntyre, M. E.1973Mean motions and impulse of a guided internal gravity wave packet. J. Fluid Mech.60, 801-811.10.1017/S0022112073000480 · Zbl 0269.76011 · doi:10.1017/S0022112073000480
[19] McIntyre, M. E.1981On the wave momentum myth. J. Fluid Mech.106, 331-347.10.1017/S0022112081001626 · Zbl 0471.76016 · doi:10.1017/S0022112081001626
[20] McIntyre, M. E.1988A note on the divergence effect and the Lagrangian-mean surface elevation in periodic water waves. J. Fluid Mech.189, 235-242.10.1017/S0022112088000989 · Zbl 0643.76014 · doi:10.1017/S0022112088000989
[21] Song, J. B.2004Second-order random wave solutions for internal waves in a two-layer fluid. Geophys. Res. Lett.31, L15302.
[22] Stokes, G. G.1847On the theory of oscillatory waves. Trans. Camb. Phil. Soc.8, 441-455.
[23] Sutherland, B. R.2016Excitation of superharmonics by internal modes in non-uniformly stratified fluid. J. Fluid Mech.793, 335-352.10.1017/jfm.2016.108 · Zbl 1382.76035 · doi:10.1017/jfm.2016.108
[24] Tabaei, A. & Akylas, T. R.2007Resonant long-short wave interactions in an unbounded rotating stratified fluid. Stud. Appl. Maths119, 271-296.10.1111/j.1467-9590.2007.00389.x · Zbl 1533.76021 · doi:10.1111/j.1467-9590.2007.00389.x
[25] Thomas, J., Bühler, O. & Shafer Smith, K.2018Wave-induced mean flows in rotating shallow water with uniform potential vorticity. J. Fluid Mech.839, 408-429.10.1017/jfm.2018.22 · Zbl 1419.86016 · doi:10.1017/jfm.2018.22
[26] Thorpe, S. A.1968On the shape of progressive internal waves. Phil. Trans. R. Soc. Lond. A263, 563-614.10.1098/rsta.1968.0033 · Zbl 0182.29503 · doi:10.1098/rsta.1968.0033
[27] Wagner, G. L. & Young, W. R.2016A three-component model for the coupled evolution of near-inertial waves, quasi-geostrophic flow and the near-inertial second harmonic. J. Fluid Mech.802, 806-837.10.1017/jfm.2016.487 · Zbl 1456.76036 · doi:10.1017/jfm.2016.487
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.