×

Dropping slender-body theory into the mud. (English) Zbl 1415.76024

Summary: The equations describing classical viscous fluid flow are notoriously challenging to solve, even approximately, when the flow is host to one or many immersed bodies. When an immersed body is slender, the smallness of its aspect ratio can sometimes be used as a basis for a ‘slender-body theory’ describing its interaction with the surrounding environment. If the fluid is complex, however, such theories are generally invalid and efforts to understand the dynamics of immersed bodies are almost entirely numerical in nature. In a valiant effort, D. R. Hewitt and N. J. Balmforth [ibid. 856, 870–897 (2018; Zbl 1415.76017)] have unearthed a theory to describe the motion of slender bodies in a viscoplastic fluid, ‘fluids’ such as mud or toothpaste which can be coaxed to flow, but only with a sufficiently large amount of forcing. Mathematical theories for some tremendously complicated physical systems may now be within reach.

MSC:

76A10 Viscoelastic fluids

Citations:

Zbl 1415.76017
Full Text: DOI

References:

[1] Balmforth, N. J.; Frigaard, I. A.; Ovarlez, G., Yielding to stress: recent developments in viscoplastic fluid mechanics, Annu. Rev. Fluid Mech., 46, 121-146, (2014) · Zbl 1297.76008 · doi:10.1146/annurev-fluid-010313-141424
[2] Coussot, P., Yield stress fluid flows: A review of experimental data, J. Non-Newtonian Fluid Mech., 211, 31-49, (2014) · doi:10.1016/j.jnnfm.2014.05.006
[3] Dabade, V.; Marath, N. K.; Subramanian, G., Effects of inertia and viscoelasticity on sedimenting anisotropic particles, J. Fluid Mech., 778, 133-188, (2015) · Zbl 1382.76004 · doi:10.1017/jfm.2015.360
[4] Elfring, G. J. & Lauga, E.2015Theory of locomotion through complex fluids. In Complex Fluids in Biological Systems, pp. 283-317. Springer.
[5] Fu, H. C.; Wolgemuth, C. W.; Powers, T. R., Swimming speeds of filaments in nonlinearly viscoelastic fluids, Phys. Fluids, 21, (2009) · Zbl 1183.76205 · doi:10.1063/1.3086320
[6] Gray, J.; Hancock, G., The propulsion of sea-urchin spermatozoa, J. Exp. Biol., 32, 4, 802-814, (1955)
[7] Hewitt, D. R.; Balmforth, N. J., Taylor’s swimming sheet in a yield-stress fluid, J. Fluid Mech., 828, 33-56, (2017) · Zbl 1460.76971 · doi:10.1017/jfm.2017.476
[8] Hewitt, D. R.; Balmforth, N. J., Viscoplastic slender-body theory, J. Fluid Mech., 856, 870-897, (2018) · Zbl 1415.76017 · doi:10.1017/jfm.2018.726
[9] Hosoi, A. E.; Goldman, D. I., Beneath our feet: strategies for locomotion in granular media, Annu. Rev. Fluid Mech., 47, 431-453, (2015) · doi:10.1146/annurev-fluid-010313-141324
[10] Johnson, R., An improved slender-body theory for Stokes-flow, J. Fluid Mech., 99, 411-431, (1980) · Zbl 0447.76037 · doi:10.1017/S0022112080000687
[11] Keller, J.; Rubinow, S., Swimming of flagellated microorganisms, Biophys. J., 16, 2, 151-170, (1976) · doi:10.1016/S0006-3495(76)85672-X
[12] Koens, L.; Lauga, E., The boundary integral formulation of Stokes flows includes slender-body theory, J. Fluid Mech., 850, 1-12, (2018) · Zbl 1415.76141 · doi:10.1017/jfm.2018.483
[13] Lauga, E.; Powers, T., The hydrodynamics of swimming microorganisms, Rep. Prog. Phys., 72, (2009) · doi:10.1088/0034-4885/72/9/096601
[14] Leal, L. G., The slow motion of slender rod-like particles in a second-order fluid, J. Fluid Mech., 69, 305-337, (1975) · Zbl 0302.76058 · doi:10.1017/S0022112075001450
[15] Leshansky, A. M., Enhanced low-Reynolds-number propulsion in heterogeneous viscous environments., Phys. Rev. E, 80, (2009)
[16] Li, C., Thomases, B. & Guy, R. D.2018 Orientation dependent elastic stress concentration at tips of slender objects translating in viscoelastic fluids, arXiv:1809.03563.
[17] Lindner, A. & Shelley, M.2015Elastic fibers in flows. In Fluid-Structure Interactions in Low-Reynolds-Number Flows, pp. 168-192. Royal Society of Chemistry. doi:10.1039/9781782628491-00168 · doi:10.1039/9781782628491-00168
[18] Liu, B.; Powers, T. R.; Breuer, K. S., Force-free swimming of a model helical flagellum in viscoelastic fluids, Proc. Natl. Acad. Sci. USA, 108, 19516-19520, (2011) · doi:10.1073/pnas.1113082108
[19] Martinez, V. A.; Schwarz-Linek, J.; Reufer, M.; Wilson, L. G.; Morozov, A. N.; Poon, W. C. K., Flagellated bacterial motility in polymer solutions, Proc. Natl. Acad. Sci. USA, 111, 17771-17776, (2014) · doi:10.1073/pnas.1415460111
[20] Mori, Y., Ohm, L. & Spirn, D.2018 Theoretical justification and error analysis for slender body theory, arXiv:1807.00178. · Zbl 1447.35253
[21] Pegler, S. S.; Balmforth, N. J., Locomotion over a viscoplastic film, J. Fluid Mech., 727, 1-29, (2013) · Zbl 1291.76377 · doi:10.1017/jfm.2013.224
[22] Spagnolie, S. E.; Liu, B.; Powers, T. R., Locomotion of helical bodies in viscoelastic fluids: enhanced swimming at large helical amplitudes, Phys. Rev. Lett., 111, (2013) · doi:10.1103/PhysRevLett.111.068101
[23] Sznitman, J. & Arratia, P. E.2015Locomotion through complex fluids: an experimental view. In Complex Fluids in Biological Systems, pp. 245-281. Springer.
[24] Tokpavi, D. L.; Magnin, A.; Jay, P., Very slow flow of Bingham viscoplastic fluid around a circular cylinder, J. Non-Newtonian Fluid Mech., 154, 65-76, (2008) · Zbl 1273.76028 · doi:10.1016/j.jnnfm.2008.02.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.