×

Pricing options on investment project expansions under commodity price uncertainty. (English) Zbl 1415.65195

Summary: In this work we develop PDE-based mathematical models for valuing real options on investment project expansions when the underlying commodity price follows a geometric Brownian motion. The models developed are of a similar form as the Black-Scholes model for pricing conventional European call options. However, unlike the Black-Scholes’ model, the payoff conditions of the current models are determined by a PDE system. An upwind finite difference scheme is used for solving the models. Numerical experiments have been performed using two examples of pricing project expansion options in the mining industry to demonstrate that our models are able to produce financially meaningful numerical results for the two non-trivial test problems.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
91G20 Derivative securities (option pricing, hedging, etc.)
91G60 Numerical methods (including Monte Carlo methods)
Full Text: DOI

References:

[1] S. A. Abdel Sabour; R. Poulin, Valuing real capital investments using the least-squares Monte Carlo method, The Engineering Economist, 51, 141-160 (2006)
[2] M. Bellalah, Irreversibility, Sunk costs and investment under uncertainty, R & D Management, 31, 115-126 (2001)
[3] M. Bellalah, A reexamination of corporate risks under incomplete information, International Journal of Finance and Economics, 6, 41-58 (2001)
[4] M. J. Brennan; E. S. Schwartz, Finite difference methods and jump processes arising in the pricing of contingent claims, Journal of Financial and Quantitative Analysis, 13, 461-474 (1978) · doi:10.2307/2330152
[5] M. J. Brennan; E. S. Schwartz, Evaluating natural resource investments, The Journal of Business, 58, 135-157 (1985)
[6] W. Chen; S. Wang, A finite difference method for pricing European and American options under a geometric Levy process, J. Ind. Mang. Optim., 11, 241-264 (2015) · Zbl 1305.91239
[7] G. Cortazar; E. S. Schwartz; J. Casassus, Optimal exploration investments under price and geological-technical uncertainty: A real options model, R & D Management, 31, 181-189 (2001)
[8] L. Costa; A. Gabriel; S. B. Suslick, Estimating the volatility of mining projects considering price and operating cost uncertainties, Resources Policy, 31, 86-94 (2006) · doi:10.1016/j.resourpol.2006.07.002
[9] A. K. Dixit; R. S. Pindyck, The Options approach to capital investment, The Economic Impact of Knowledge, 325-340 (1995) · doi:10.1016/B978-0-7506-7009-8.50024-0
[10] S. E. Fadugba; F. H. Adefolaju; O. H. Akindutire, On the stability and accuracy of finite difference method for options pricing, Mathematical Theory and Modeling, 2, 101-108 (2012)
[11] R. Geske, The valuation of compound options, Journal of Financial Economics, 7, 63-81 (1979)
[12] M. Haque; E. Topal; E. Lilford, A numerical study for a mining project using real options valuation under commodity price uncertainty, Resources Policy, 39, 115-123 (2014) · doi:10.1016/j.resourpol.2013.12.004
[13] Hartono; L. S. Jennings; S. Wang, Iterative upwind finite difference method with completed Richardson extrapolation for state-constrained Hamilton-Jacobi-Bellman equations, Pacific J. of Optim., 12, 379-397 (2016) · Zbl 1405.65096
[14] C. Hirsch, Numerical Computation of Internal and External Flows, John Wiley & Sons, 1990. · Zbl 0742.76001
[15] J. E. Hodder; H. E. Riggs, Pitfalls in evaluating risky projects, Harvard Business Reviews, 63, 128-135 (1985)
[16] D. C. Lesmana; S. Wang, An upwind finite difference method for a nonlinear Black-Scholes equation governing European option valuation under transaction costs, Applied Mathematics and Computation, 219, 8811-8828 (2013) · Zbl 1288.91193 · doi:10.1016/j.amc.2012.12.077
[17] D. C. Lesmana; S. Wang, A numerical scheme for pricing American options with transaction costs under a jump diffusion process, J. Ind. Mang. Optim., 13, 1793-1813 (2017) · Zbl 1422.91768
[18] W. Li; S. Wang, Penalty approach to the HJB Equation arising in European stock option pricing with proportional transaction costs, Journal of Optimization Theory and Applications, 143, 279-293 (2009) · Zbl 1180.91291 · doi:10.1007/s10957-009-9559-7
[19] W. Li; S. Wang, Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme, J. Ind. Mang. Optim., 9, 365-389 (2013) · Zbl 1276.49016 · doi:10.3934/jimo.2013.9.365
[20] W. Li; S. Wang, Pricing European options with proportional transaction costs and stochastic volatility using a penalty approach and a finite volume scheme, Computers and Mathematics with Applications, 73, 2454-2469 (2017) · Zbl 1372.91119 · doi:10.1016/j.camwa.2017.03.024
[21] A. Moel; P. Tufano, When are real options exercised? An empirical study of mine closings, Review of Financial Studies, 15, 35-64 (2002)
[22] N. Moyen; M. Slade; R. Uppal, Valuing risk and flexibility-a comparison of methods, Resources Policy, 22, 63-74 (1996)
[23] S. C. Myers, Finance theory and financial strategy, Interfaces, 14, 126-137 (1984) · doi:10.1287/inte.14.1.126
[24] L. Trigeorgis, The nature of option interactions and the valuation of investments with multiple real options, Journal of Financial and Quantitative Analysis, 28, 1-20 (1993) · doi:10.2307/2331148
[25] L. Trigeorgis, Real Options, Princeton Series in Applied Mathematics, The MIT Press, Princeton, NJ, 1996. · Zbl 0924.90026
[26] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Engelwood Cliffs, NJ, 1962. · Zbl 0133.08602
[27] S. Wang, A novel fitted finite volume method for the Black-Scholes equation governing option pricing, IMA J. Numer. Anal., 24, 699-720 (2004) · Zbl 1147.91332 · doi:10.1093/imanum/24.4.699
[28] S. Wang; L. S. Jennings; K. L. Teo, Numerical solution of Hamilton-Jacobi-Bellman equations by an upwind finite volume method, Journal of Global Optimization, 27, 177-192 (2003) · Zbl 1047.49026 · doi:10.1023/A:1024980623095
[29] S. Wang; S. Zhang; Z. Fang, A superconvergent fitted finite volume Method for Black-Scholes equations governing European and American option valuation, Numerical Methods For Partial Differential Equations, 31, 181-208 (2015) · Zbl 1422.91774 · doi:10.1002/num.21941
[30] P. Wilmott, J. Dewynne and S. Howison, Option Pricing: Mathematical Models and Computation, Oxford Financial Press, Oxford, 1993. · Zbl 0844.90011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.