×

Long term behaviour of a reversible system of interacting random walks. (English) Zbl 1415.60115

Summary: This paper studies the long-term behaviour of a system of interacting random walks labelled by vertices of a finite graph. We show that the system undergoes phase transitions, with different behaviour in various regions, depending on model parameters and properties of the underlying graph. We provide the complete classification of the long-term behaviour of the corresponding continuous time Markov chain, identifying whether it is null recurrent, positive recurrent, or transient. The proofs are partially based on the reversibility of the model, which allows us to use the method of electric networks. We also provide some alternative proofs (based on the Lyapunov function method and the renewal theory), which are of interest in their own right, since they do not require reversibility and can be applied to more general situations.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60G50 Sums of independent random variables; random walks

References:

[1] Costa, M., Menshikov, M., Shcherbakov, V., Vachkovskaia, M.: Localisation in a growth model with interaction. J. Stat. Phys. 171(6), 1150-1175 (2018) · Zbl 1392.60075 · doi:10.1007/s10955-018-2055-4
[2] Doyle, P.G., Snell, J.L.: Random Walks and Electrical Networks. Mathematical Association of America, Washington, DC (1984) · Zbl 0583.60065
[3] Erdős, P., Taylor, S.J.: Some problems concerning the structure of random walk paths. Acta Math. Acad. Sci. Hungar. 11, 137-162 (1960) · Zbl 0091.13303 · doi:10.1007/BF02020631
[4] Fayolle, G., Malyshev, V., Menshikov, M.: Topics in the constructive theory of countable Markov chains. Cambridge University Press, Cambridge (1995) · Zbl 0823.60053 · doi:10.1017/CBO9780511984020
[5] Karlin, S., Taylor, H.: A first course in stochastic processes, 2nd edn. Academic Press Inc., Cambridge (1975) · Zbl 0315.60016
[6] Kelly, F.: Reversibility and Stochastic Networks. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1979) · Zbl 0422.60001
[7] Liggett, T.: Continuous time Markov Processes : An Introduction. Graduate Studies in Mathematics, American Mathematical Society, Providence (2010) · Zbl 1205.60002 · doi:10.1090/gsm/113
[8] Lyons, R., Peres, Y.: Probability on Trees and Electrical Networks. Cambridge University Press, Cambridge (2016) · Zbl 1376.05002 · doi:10.1017/9781316672815
[9] Menshikov, M.V., Popov, S., Wade, A.R.: Non-homogeneous Random Walks: Lyapunov Function Methods for Near-Critical Stochastic Systems. Cambridge University Press, Cambridge (2017) · Zbl 1376.60005 · doi:10.1017/9781139208468
[10] Norris, J.: Markov Chains. Cambridge University Press, Cambridge (1997) · Zbl 0873.60043 · doi:10.1017/CBO9780511810633
[11] Shcherbakov, V., Volkov, S.: Stability of a growth process generated by monomer filling with nearest neighbour cooperative effects. Stoch. Process. Appl. 120, 926-948 (2010) · Zbl 1202.60060 · doi:10.1016/j.spa.2010.01.020
[12] Shcherbakov, V. and Volkov, S.: Queueing with neighbours. In: Bingham, N.H., Goldie, C.M. (eds.) Probability and Mathematical Genetics. Papers in honour of Sir John Kingman. LMS Lecture Notes Series, 378, 463-481 (2010) · Zbl 1213.60121
[13] Shcherbakov, V., Volkov, S.: Long term behaviour of locally interacting birth-and-death processes. J. Stat. Phys. 158(1), 132-157 (2015) · Zbl 1319.60182 · doi:10.1007/s10955-014-1122-8
[14] Volkov, S.: Vertex-reinforced random walk on arbitrary graphs. Ann. Probab. 29, 66-91 (2001) · Zbl 1031.60089 · doi:10.1214/aop/1008956322
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.