×

The rigidity of Ricci shrinkers of dimension four. (English) Zbl 1415.53050

Summary: In dimension 4, we show that a nontrivial flat cone cannot be approximated by smooth Ricci shrinkers with bounded scalar curvature and Harnack inequality under the pointed-Gromov-Hausdorff topology. As applications, we obtain uniform positive lower bounds of scalar curvature and potential functions on Ricci shrinkers satisfying some natural geometric properties.

MSC:

53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)

References:

[1] Axler, Sheldon; Bourdon, Paul; Ramey, Wade, Harmonic function theory, Graduate Texts in Mathematics 137, xii+231 pp. (1992), Springer-Verlag, New York · Zbl 0959.31001 · doi:10.1007/b97238
[2] Biquard, Olivier, D\'esingularisation de m\'etriques d’Einstein. I, Invent. Math., 192, 1, 197-252 (2013) · Zbl 1275.53041 · doi:10.1007/s00222-012-0410-7
[3] B\"ohm, Christoph; Wilking, Burkhard, Manifolds with positive curvature operators are space forms, Ann. of Math. (2), 167, 3, 1079-1097 (2008) · Zbl 1185.53073 · doi:10.4007/annals.2008.167.1079
[4] Cao, Huai-Dong, Recent progress on Ricci solitons. Recent advances in geometric analysis, Adv. Lect. Math. (ALM) 11, 1-38 (2010), Int. Press, Somerville, MA · Zbl 1201.53046
[5] Cao, Huai-Dong, Geometry of complete gradient shrinking Ricci solitons. Geometry and analysis. No. 1, Adv. Lect. Math. (ALM) 17, 227-246 (2011), Int. Press, Somerville, MA · Zbl 1268.53047
[6] Cao, Huai-Dong; Chen, Bing-Long; Zhu, Xi-Ping, Recent developments on Hamilton’s Ricci flow. Surveys in differential geometry. Vol. XII. Geometric flows, Surv. Differ. Geom. 12, 47-112 (2008), Int. Press, Somerville, MA · Zbl 1157.53002 · doi:10.4310/SDG.2007.v12.n1.a3
[7] Cao, Huai-Dong; Chen, Qiang, On Bach-flat gradient shrinking Ricci solitons, Duke Math. J., 162, 6, 1149-1169 (2013) · Zbl 1277.53036 · doi:10.1215/00127094-2147649
[8] Cao, Huai-Dong; Sesum, N., A compactness result for K\"ahler Ricci solitons, Adv. Math., 211, 2, 794-818 (2007) · Zbl 1127.53055 · doi:10.1016/j.aim.2006.09.011
[9] Cao, Xiaodong; Wang, Biao; Zhang, Zhou, On locally conformally flat gradient shrinking Ricci solitons, Commun. Contemp. Math., 13, 2, 269-282 (2011) · Zbl 1215.53061 · doi:10.1142/S0219199711004191
[10] Carrillo, Jos\'e A.; Ni, Lei, Sharp logarithmic Sobolev inequalities on gradient solitons and applications, Comm. Anal. Geom., 17, 4, 721-753 (2009) · Zbl 1197.53083 · doi:10.4310/CAG.2009.v17.n4.a7
[11] Chau, Albert; Tam, Luen-Fai; Yu, Chengjie, Pseudolocality for the Ricci flow and applications, Canad. J. Math., 63, 1, 55-85 (2011) · Zbl 1214.53053 · doi:10.4153/CJM-2010-076-2
[12] Cheeger, J.; Colding, T. H.; Tian, G., On the singularities of spaces with bounded Ricci curvature, Geom. Funct. Anal., 12, 5, 873-914 (2002) · Zbl 1030.53046 · doi:10.1007/PL00012649
[13] Chen, Bing-Long, Strong uniqueness of the Ricci flow, J. Differential Geom., 82, 2, 363-382 (2009) · Zbl 1177.53036
[14] Chen, X.-X.; Donaldson, S. K., Integral bounds on curvature and Gromov-Hausdorff limits, J. Topol., 7, 2, 543-556 (2014) · Zbl 1308.53057 · doi:10.1112/jtopol/jtt037
[15] Chen, Xiuxiong; Wang, Bing, Space of Ricci flows I, Comm. Pure Appl. Math., 65, 10, 1399-1457 (2012) · Zbl 1252.53076 · doi:10.1002/cpa.21414
[16] Chen, Xiuxiong; Wang, Bing, Space of Ricci flows (II)—part A: moduli of singular Calabi-Yau spaces, Forum Math. Sigma, 5, e32, 103 pp. (2017) · Zbl 1385.53033 · doi:10.1017/fms.2017.28
[17] Chen, Xiuxiong; Wang, Yuanqi, On four-dimensional anti-self-dual gradient Ricci solitons, J. Geom. Anal., 25, 2, 1335-1343 (2015) · Zbl 1322.53041 · doi:10.1007/s12220-014-9471-8
[18] Chow, Bennett; Chu, Sun-Chin; Glickenstein, David; Guenther, Christine; Isenberg, James; Ivey, Tom; Knopf, Dan; Lu, Peng; Luo, Feng; Ni, Lei, The Ricci flow: techniques and applications. Part I, Mathematical Surveys and Monographs 135, xxiv+536 pp. (2007), American Mathematical Society, Providence, RI · Zbl 1157.53034
[19] Chow, Bennett; Lu, Peng; Yang, Bo, Lower bounds for the scalar curvatures of noncompact gradient Ricci solitons, C. R. Math. Acad. Sci. Paris, 349, 23-24, 1265-1267 (2011) · Zbl 1230.53036 · doi:10.1016/j.crma.2011.11.004
[20] Enders, Joerg; M\"uller, Reto; Topping, Peter M., On type-I singularities in Ricci flow, Comm. Anal. Geom., 19, 5, 905-922 (2011) · Zbl 1244.53074 · doi:10.4310/CAG.2011.v19.n5.a4
[21] Gilbarg, David; Trudinger, Neil S., Elliptic partial differential equations of second order, x+401 pp. (1977), Springer-Verlag, Berlin-New York · Zbl 0361.35003
[22] Hamilton, Richard S., The Ricci flow on surfaces. Mathematics and general relativity, Santa Cruz, CA, 1986, Contemp. Math. 71, 237-262 (1988), Amer. Math. Soc., Providence, RI · Zbl 0663.53031 · doi:10.1090/conm/071/954419
[23] Hamilton, Richard S., The formation of singularities in the Ricci flow. Surveys in differential geometry, Vol.II, Cambridge, MA, 1993, 7-136 (1995), Int. Press, Cambridge, MA · Zbl 0867.53030
[24] Haslhofer, Robert; M\"uller, Reto, A compactness theorem for complete Ricci shrinkers, Geom. Funct. Anal., 21, 5, 1091-1116 (2011) · Zbl 1239.53056 · doi:10.1007/s00039-011-0137-4
[25] Haslhofer, Robert; M\"uller, Reto, A note on the compactness theorem for 4d Ricci shrinkers, Proc. Amer. Math. Soc., 143, 10, 4433-4437 (2015) · Zbl 1323.53046 · doi:10.1090/proc/12648
[26] Ishii, Hitoshi, On the equivalence of two notions of weak solutions, viscosity solutions and distribution solutions, Funkcial. Ekvac., 38, 1, 101-120 (1995) · Zbl 0833.35053
[27] Kotschwar, Brett; Wang, Lu, Rigidity of asymptotically conical shrinking gradient Ricci solitons, J. Differential Geom., 100, 1, 55-108 (2015) · Zbl 1432.53063
[28] Li, Yu, Ricci flow on asymptotically Euclidean manifolds, Geom. Topol., 22, 3, 1837-1891 (2018) · Zbl 1387.53088 · doi:10.2140/gt.2018.22.1837
[29] LW2 Y. Li and B. Wang, Heat kernel on Ricci shrinkers, arXiv:1901.05691.
[30] MoVi P. Morteza and J. Viaclovsky, The Calabi metric and desingularization of Einstein orbifolds, arXiv:1610.02428. · Zbl 1448.53054
[31] Munteanu, Ovidiu; Wang, Jiaping, Geometry of shrinking Ricci solitons, Compos. Math., 151, 12, 2273-2300 (2015) · Zbl 1339.53036 · doi:10.1112/S0010437X15007496
[32] MW16 O. Munteanu and J. Wang, Structure at infinity for shrinking Ricci solitons, arXiv:1606.01861. · Zbl 1436.53028
[33] Naber, Aaron, Noncompact shrinking four solitons with nonnegative curvature, J. Reine Angew. Math., 645, 125-153 (2010) · Zbl 1196.53041 · doi:10.1515/CRELLE.2010.062
[34] Ni, Lei; Wallach, Nolan, On a classification of gradient shrinking solitons, Math. Res. Lett., 15, 5, 941-955 (2008) · Zbl 1158.53052 · doi:10.4310/MRL.2008.v15.n5.a9
[35] Pe1 G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159. · Zbl 1130.53001
[36] Pe2 G. Perelman, Ricci flow with surgery on three-manifolds, arXiv:math.DG/0303109. · Zbl 1130.53002
[37] Petersen, Peter; Wylie, William, On the classification of gradient Ricci solitons, Geom. Topol., 14, 4, 2277-2300 (2010) · Zbl 1202.53049 · doi:10.2140/gt.2010.14.2277
[38] Weber, Brian, Convergence of compact Ricci solitons, Int. Math. Res. Not. IMRN, 1, 96-118 (2011) · Zbl 1211.53087 · doi:10.1093/imrn/rnq055
[39] Zhang, Xi, Compactness theorems for gradient Ricci solitons, J. Geom. Phys., 56, 12, 2481-2499 (2006) · Zbl 1107.53045 · doi:10.1016/j.geomphys.2006.01.004
[40] Zhang, Zhenlei, Degeneration of shrinking Ricci solitons, Int. Math. Res. Not. IMRN, 21, 4137-4158 (2010) · Zbl 1209.53030 · doi:10.1093/imrn/rnq020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.