×

Sign-changing solutions of an elliptic system with critical exponent in dimension \(N= 5 \). (English) Zbl 1415.35114

Authors’ abstract: We study the following elliptic system with critical exponent: \[\begin{cases} - \Delta u = \lambda_1u + u_1|u|^{2*-2}u + \beta |u|^{\frac{2*}{2} - 2}u|v|^{\frac{2*}{2}},\quad & x \in \Omega \\ - \Delta v = \lambda_2v + u_2|v|^{2*-2}v + \beta |v|^{\frac{2*}{2} - 2}v|u|^{\frac{2*}{2}},\quad & x \in \Omega \\ u = v = 0,\quad & x \in \partial \Omega, \end{cases}\] where \(\Omega\) is a smooth bounded domain in \(\mathbb{R}^N\), \(N=5\), \(2*:=\frac{2N}{N-2}\) is the critical Sobolev exponent, \(\mu_1,\mu_2 > 0\), \(\beta \in (- \sqrt{\mu_1,\mu_2},0), 0 <\lambda_{1}, \lambda_{2} < \lambda_{1} (\Omega), \lambda_1 (\Omega)\) is the first eigenvalue of \(-\Delta\) in \(H^1_0(\Omega)\). In [Commun. Partial Differ. Equations 39, No. 10, 1827–1859 (2014; Zbl 1308.35084)], Z. Chen et al. established a sign-changing solution of the above system in the case \(N\geq 6\) for \(\beta < 0\) and \(\lambda_{1},\lambda_{2} \in (0, \lambda_1(\Omega))\). We show that in dimension \(N = 5\), for \(\lambda_{1}\) and \(\lambda_{2}\) slightly smaller than \(\lambda_{1}(\Omega)\), the above system has a sign-changing solution in the following sense: one component changes sign and has exactly two nodal domains, while the other one is positive.

MSC:

35J47 Second-order elliptic systems
35J50 Variational methods for elliptic systems
35B33 Critical exponents in context of PDEs

Citations:

Zbl 1308.35084
Full Text: DOI

References:

[1] N. Akhmediev and A. Ankiewicz, Partially coherent solitons on a finite background, Phys. Rev. Lett. 82 (1999), 2661-2664. · doi:10.1103/PhysRevLett.82.2661
[2] A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc. 75 (2007), 67-82. · Zbl 1130.34014 · doi:10.1112/jlms/jdl020
[3] F. Atkinson, H. Brezis, and L. Peletier, Nodal solutions of elliptic equations with the critical Sobolev exponents, J. Differential Equations 85 (1990), 151-170. · Zbl 0702.35099 · doi:10.1016/0022-0396(90)90093-5
[4] T. Bartsch, N. Dancer, and Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differential Equations 37 (2010), 345-361. · Zbl 1189.35074 · doi:10.1007/s00526-009-0265-y
[5] T. Bartsch and Z.-Q. Wang, Note on ground states of nonlinear elliptic Schrödinger systems, J. Partial Differential Equations 19 (2006), 200-207. · Zbl 1104.35048
[6] T. Bartsch, Z.-Q. Wang, and J. Wei, Bounded states for a coupled Schrödinger system, J. Fixed point Theory Appl. 2 (2007), 353-367. · Zbl 1153.35390 · doi:10.1007/s11784-007-0033-6
[7] H. Brezis, and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490. · Zbl 0526.46037 · doi:10.2307/2044999
[8] G. Cerami, S. Solimini, and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal. 69 (1986), 289-306. · Zbl 0614.35035 · doi:10.1016/0022-1236(86)90094-7
[9] Z. Chen, C.-S. Lin, and W. Zou, Multiple sign-changing and semi-nodal solutions for coupled Schrödinger equations, J. Differential Equations 255 (2013), 4289-4311. · Zbl 1281.35073 · doi:10.1016/j.jde.2013.08.009
[10] Z. Chen, C.-S. Lin, and W. Zou, Sign-changing solutions and phase separation for an elliptic system with critical exponent, Comm. Partial Differential Equations 39 (2014), 1827-1859. · Zbl 1308.35084 · doi:10.1080/03605302.2014.908391
[11] Z. Chen, C.-S. Lin, and W. Zou, Infinitely many sign-changing and semi-nodal solutions for a nonlinear Schrödinger system, Ann. Sc. Norm. Super. Pisa Cl. Sci. 15 (2016), 859-897. · Zbl 1343.35101
[12] Z. Chen and W. Zou, Positive least energy solutions and phase seperation for coupled Schrödinger equations with critical exponent, Arch. Ration. Mech. Anal. 205 (2012), 515-551. · Zbl 1256.35132 · doi:10.1007/s00205-012-0513-8
[13] Z. Chen and W. Zou, An optimal constant for the existence of least energy solutions of a coupled Schrödinger system, Calc. Var. Partial Differential Equations 48 (2013), 695-711. · Zbl 1286.35104 · doi:10.1007/s00526-012-0568-2
[14] Z. Chen and W. Zou, Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent:higer dimensional case Calc, Var. Partial Differential Equations 52 (2015), 423-467. · Zbl 1312.35158 · doi:10.1007/s00526-014-0717-x
[15] N. Dancer, J. Wei, and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 953-969. · Zbl 1191.35121 · doi:10.1016/j.anihpc.2010.01.009
[16] G. Devillanova and S. Solimini, A multiplicity result for elliptic equations at critical growth in low dimension, Comm. Contemp. Math. 5 (2003), 171-177. · Zbl 1114.35317 · doi:10.1142/S0219199703000938
[17] B. Esry, C. Greene, J. Burke, and J. Bohn, Hartree-Fock theory for double condensates, Phys. Rev. Lett. 78 (1997), 3594-3597. · doi:10.1103/PhysRevLett.78.3594
[18] S. Kim, On vector solutions for coupled nonlinear Schrödinger equations with critical exponents, Comm. Pure Appl. Anal. 12 (2013), 1259-1277. · Zbl 1309.35137 · doi:10.3934/cpaa.2013.12.1259
[19] Y. Kivshar and B. Luther-Davies, Dark optical solitons: physics and applications, Physics Reports 298 (1998), 81-197. · doi:10.1016/S0370-1573(97)00073-2
[20] Z. Liu and Z.-Q. Wang, Multiple bound states of nonlinear Schrödinger systems, Comm. Math. Phys. 282 (2008), 721-731. · Zbl 1156.35093 · doi:10.1007/s00220-008-0546-x
[21] T. Lin and J. Wei, Ground state of N coupled nonlinear Schrödinger equations in Rn, n ≤ 3, Comm. Math. Phys. 255 (2005), 629-653. · Zbl 1119.35087 · doi:10.1007/s00220-005-1313-x
[22] T. Lin and J. Wei, Spikes in two coupled nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 403-439. · Zbl 1080.35143 · doi:10.1016/j.anihpc.2004.03.004
[23] C. Menyuk, Nonlinear pulse propagation in birefringent optical fibers, IEEE J. Quantum Electron. 23 (1987), 174-176. · doi:10.1109/JQE.1987.1073308
[24] A. Pomponio, Coupled nonlinear Schrödinger systems with potentials, J. Differential Equations 227 (2006), 258-281. · Zbl 1100.35098 · doi:10.1016/j.jde.2005.09.002
[25] P. Roselli and M. Willem, Least energy nodal solutions of the Brezis-Nirenberg problem in dimension N = 5, Comm. Contemp. Math. 11 (2009), 59-69. · Zbl 1178.35175 · doi:10.1142/S0219199709003314
[26] G. Tarantello, Nodal solutions of semilinear elliptic equations with critical exponent, Differential Integral Equations 5 (1992), 25-42. · Zbl 0758.35035
[27] J Wei and T. Weth, Asymptotic behavior of solutions of planar elliptic systems with strong competition, Nonlinearity 21 (2008), 305-317. · Zbl 1132.35482 · doi:10.1088/0951-7715/21/2/006
[28] D. Zhang, On multiple solutions of \[\Delta{u}+\lambda{u}+|u|\frac{4}{n-2}{u}=0\] Δu+λu+|u|4n−2u=0, Nonlinear Anal. TMA.13 (1989), 353-372. · Zbl 0704.35053 · doi:10.1016/0362-546X(89)90044-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.