×

Standard parabolic subsets of highest weight modules. (English) Zbl 1415.17008

Trans. Am. Math. Soc. 369, No. 4, 2363-2394 (2017); erratum ibid. 369, No. 4, 3015-3015 (2017).
Summary: In this paper we study certain fundamental and distinguished subsets of weights of an arbitrary highest weight module over a complex semisimple Lie algebra. These sets \(\mathrm{wt}_J \mathbb{V}^\lambda \) are defined for each highest weight module \( \mathbb{V}^\lambda \) and each subset \( J\) of simple roots; we term them ”standard parabolic subsets of weights”. It is shown that for any highest weight module, the sets of simple roots whose corresponding standard parabolic subsets of weights are equal form intervals in the poset of subsets of the set of simple roots under containment. Moreover, we provide closed-form expressions for the maximum and minimum elements of the aforementioned intervals for all highest weight modules \( \mathbb{V}^\lambda \) over semisimple Lie algebras \( \mathfrak{g}\). Surprisingly, these formulas only require the Dynkin diagram of \( \mathfrak{g}\) and the integrability data of \( \mathbb{V}^\lambda \). As a consequence, we extend classical work by Satake, Borel-Tits, Vinberg, and Casselman, as well as recent variants by Cellini-Marietti to all highest weight modules. We further compute the dimension, stabilizer, and vertex set of standard parabolic faces of highest weight modules and show that they are completely determined by the aforementioned closed-form expressions. We also compute the \( f\)-polynomial and a minimal half-space representation of the convex hull of the set of weights. These results were recently shown for the adjoint representation of a simple Lie algebra, but analogues remain unknown for any other finite- or infinite-dimensional highest weight module. Our analysis is uniform and type-free, across all semisimple Lie algebras and for arbitrary highest weight modules.
In the Erratum we correct an error in one of the main theorems (Theorem C).

MSC:

17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
17B20 Simple, semisimple, reductive (super)algebras
52B15 Symmetry properties of polytopes
52B20 Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry)

References:

[1] Ardila, Federico; Beck, Matthias; Ho{\c{s}}ten, Serkan; Pfeifle, Julian; Seashore, Kim, Root polytopes and growth series of root lattices, SIAM J. Discrete Math., 25, 1, 360-378 (2011) · Zbl 1261.52010 · doi:10.1137/090749293
[2] Bourbaki, Nicolas, Lie groups and Lie algebras. Chapters 4-6, Elements of Mathematics (Berlin), xii+300 pp. (2002), Springer-Verlag, Berlin · Zbl 0983.17001 · doi:10.1007/978-3-540-89394-3
[3] Cellini, Paola; Marietti, Mario, Root polytopes and Borel subalgebras, Int. Math. Res. Not. IMRN, 12, 4392-4420 (2015) · Zbl 1337.17011 · doi:10.1093/imrn/rnu070
[4] Cellini, Paola; Papi, Paolo, Abelian ideals of Borel subalgebras and affine Weyl groups, Adv. Math., 187, 2, 320-361 (2004) · Zbl 1112.17011 · doi:10.1016/j.aim.2003.08.011
[5] Chari, Vyjayanthi; Dolbin, R. J.; Ridenour, Tim, Ideals in parabolic subalgebras of simple Lie algebras. Symmetry in mathematics and physics, Contemp. Math. 490, 47-60 (2009), Amer. Math. Soc., Providence, RI · Zbl 1225.17013 · doi:10.1090/conm/490/09586
[6] Chari, Vyjayanthi; Greenstein, Jacob, A family of Koszul algebras arising from finite-dimensional representations of simple Lie algebras, Adv. Math., 220, 4, 1193-1221 (2009) · Zbl 1165.17005 · doi:10.1016/j.aim.2008.11.007
[7] Chari, Vyjayanthi; Khare, Apoorva; Ridenour, Tim, Faces of polytopes and Koszul algebras, J. Pure Appl. Algebra, 216, 7, 1611-1625 (2012) · Zbl 1277.17017 · doi:10.1016/j.jpaa.2011.10.014
[8] Dixmier, Jacques, Enveloping algebras, Graduate Studies in Mathematics 11, xx+379 pp. (1996), American Mathematical Society, Providence, RI · Zbl 0867.17001 · doi:10.1090/gsm/011
[9] Fernando, Suren L., Lie algebra modules with finite-dimensional weight spaces. I, Trans. Amer. Math. Soc., 322, 2, 757-781 (1990) · Zbl 0712.17005 · doi:10.2307/2001724
[10] Hong, Jin; Kang, Seok-Jin, Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics 42, xviii+307 pp. (2002), American Mathematical Society, Providence, RI · Zbl 1134.17007 · doi:10.1090/gsm/042
[11] Humphreys, James E., Representations of semisimple Lie algebras in the BGG category \(\mathcal{O} \), Graduate Studies in Mathematics 94, xvi+289 pp. (2008), American Mathematical Society, Providence, RI · Zbl 1177.17001 · doi:10.1090/gsm/094
[12] Kamnitzer, Joel, Mirkovi\'c-Vilonen cycles and polytopes, Ann. of Math. (2), 171, 1, 245-294 (2010) · Zbl 1271.20058 · doi:10.4007/annals.2010.171.245
[13] Joel Kamnitzer, Categorification of Lie algebras, http://www.bourbaki.ens.fr/TEXTES/1072.pdfS\'eminaire Bourbaki 1072 (2013), 1-22. · Zbl 1229.22002
[14] Khare, Apoorva, Faces and maximizer subsets of highest weight modules, J. Algebra, 455, 32-76 (2016) · Zbl 1337.17009 · doi:10.1016/j.jalgebra.2016.02.004
[15] Khare, Apoorva; Ridenour, Tim, Faces of weight polytopes and a generalization of a theorem of Vinberg, Algebr. Represent. Theory, 15, 3, 593-611 (2012) · Zbl 1245.17005 · doi:10.1007/s10468-010-9261-3
[16] Zhuo Li, You’an Cao, and Zhenheng Li, Orbit structures of weight polytopes, preprint, http://arxiv.org/abs/1411.6140math.RT/1411.6140.
[17] M{\'e}sz{\'a}ros, Karola, Root polytopes, triangulations, and the subdivision algebra, II, Trans. Amer. Math. Soc., 363, 11, 6111-6141 (2011) · Zbl 1233.05216 · doi:10.1090/S0002-9947-2011-05371-7
[18] Putcha, Mohan S.; Renner, Lex E., The system of idempotents and the lattice of \({\mathcal{J}} \)-classes of reductive algebraic monoids, J. Algebra, 116, 2, 385-399 (1988) · Zbl 0678.20039 · doi:10.1016/0021-8693(88)90225-6
[19] Vinberg, Ernest B., Some commutative subalgebras of a universal enveloping algebra, Izv. Akad. Nauk SSSR Ser. Mat.. Math. USSR-Izv., 54 36, 1, 1-22 (1991) · Zbl 0714.17009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.