×

Weakly coupled de Sitter vacua with fluxes and the swampland. (English) Zbl 1414.83091

Summary: It was recently argued that the swampland distance conjecture rules out dS vacua at parametrically large field distances. We point out that this conclusion can in principle be avoided in the presence of large fluxes that are not bounded by a tadpole cancellation condition. We then study this possibility in the concrete setting of classical type IIA flux compactifications with (anti-)O6-planes, (anti-)D6-branes and/or KK monopoles and show that, nonetheless, parametrically controlled dS vacua are strongly constrained. In particular, we find that such dS vacua are ruled out at parametrically large volume and/or parametrically small string coupling. We also find obstructions in the general case where the parametrically large field is an arbitrary field combination.

MSC:

83E30 String and superstring theories in gravitational theory
83E15 Kaluza-Klein and other higher-dimensional theories
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory

References:

[1] S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev.D 68 (2003) 046005 [hep-th/0301240] [INSPIRE]. · Zbl 1244.83036
[2] C.P. Burgess, R. Kallosh and F. Quevedo, de Sitter string vacua from supersymmetric D terms, JHEP10 (2003) 056 [hep-th/0309187] [INSPIRE].
[3] V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP03 (2005) 007 [hep-th/0502058] [INSPIRE].
[4] M. Rummel and A. Westphal, A sufficient condition for de Sitter vacua in type IIB string theory, JHEP01 (2012) 020 [arXiv:1107.2115] [INSPIRE]. · Zbl 1306.81273
[5] J. Louis, M. Rummel, R. Valandro and A. Westphal, Building an explicit de Sitter, JHEP10 (2012) 163 [arXiv:1208.3208] [INSPIRE]. · Zbl 1397.83201
[6] M. Cicoli, A. Maharana, F. Quevedo and C.P. Burgess, de Sitter String Vacua from Dilaton-dependent Non-perturbative Effects, JHEP06 (2012) 011 [arXiv:1203.1750] [INSPIRE]. · Zbl 1397.81229
[7] M. Cicoli, D. Klevers, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, Explicit de Sitter Flux Vacua for Global String Models with Chiral Matter, JHEP05 (2014) 001 [arXiv:1312.0014] [INSPIRE]. · Zbl 1333.83178
[8] J. Blabäck, D. Roest and I. Zavala, de Sitter Vacua from Nonperturbative Flux Compactifications, Phys. Rev.D 90 (2014) 024065 [arXiv:1312.5328] [INSPIRE].
[9] U.H. Danielsson and G. Dibitetto, An alternative to anti-branes and O-planes?, JHEP05 (2014) 013 [arXiv:1312.5331] [INSPIRE].
[10] M. Rummel and Y. Sumitomo, de Sitter Vacua from a D-term Generated Racetrack Uplift, JHEP01 (2015) 015 [arXiv:1407.7580] [INSPIRE]. · Zbl 1388.81496
[11] A.P. Braun, M. Rummel, Y. Sumitomo and R. Valandro, de Sitter vacua from a D-term generated racetrack potential in hypersurface Calabi-Yau compactifications, JHEP12 (2015) 033 [arXiv:1509.06918] [INSPIRE]. · Zbl 1388.81496
[12] R. Kallosh, A.D. Linde, B. Vercnocke and T. Wrase, Analytic Classes of Metastable de Sitter Vacua, JHEP10 (2014) 011 [arXiv:1406.4866] [INSPIRE]. · Zbl 1333.83244
[13] M.C.D. Marsh, B. Vercnocke and T. Wrase, Decoupling and de Sitter Vacua in Approximate No-Scale Supergravities, JHEP05 (2015) 081 [arXiv:1411.6625] [INSPIRE]. · Zbl 1388.83861
[14] A. Guarino and G. Inverso, Single-step de Sitter vacua from nonperturbative effects with matter, Phys. Rev.D 93 (2016) 066013 [arXiv:1511.07841] [INSPIRE].
[15] A. Retolaza and A. Uranga, de Sitter Uplift with Dynamical SUSY Breaking, JHEP04 (2016) 137 [arXiv:1512.06363] [INSPIRE]. · Zbl 1388.83944
[16] X. Dong, B. Horn, E. Silverstein and G. Torroba, Micromanaging de Sitter holography, Class. Quant. Grav.27 (2010) 245020 [arXiv:1005.5403] [INSPIRE]. · Zbl 1206.83140
[17] M. Dodelson, X. Dong, E. Silverstein and G. Torroba, New solutions with accelerated expansion in string theory, JHEP12 (2014) 050 [arXiv:1310.5297] [INSPIRE]. · Zbl 1333.81323
[18] B. de Carlos, A. Guarino and J.M. Moreno, Flux moduli stabilisation, Supergravity algebras and no-go theorems, JHEP01 (2010) 012 [arXiv:0907.5580] [INSPIRE]. · Zbl 1269.81155
[19] B. de Carlos, A. Guarino and J.M. Moreno, Complete classification of Minkowski vacua in generalised flux models, JHEP02 (2010) 076 [arXiv:0911.2876] [INSPIRE]. · Zbl 1270.81161
[20] G. Dibitetto, R. Linares and D. Roest, Flux Compactifications, Gauge Algebras and de Sitter, Phys. Lett.B 688 (2010) 96 [arXiv:1001.3982] [INSPIRE].
[21] U.H. Danielsson and G. Dibitetto, On the distribution of stable de Sitter vacua, JHEP03 (2013) 018 [arXiv:1212.4984] [INSPIRE].
[22] J. Blabäck, U.H. Danielsson and G. Dibitetto, Fully stable dS vacua from generalised fluxes, JHEP08 (2013) 054 [arXiv:1301.7073] [INSPIRE]. · Zbl 1342.83334
[23] C. Damian, L.R. Diaz-Barron, O. Loaiza-Brito and M. Sabido, Slow-Roll Inflation in Non-geometric Flux Compactification, JHEP06 (2013) 109 [arXiv:1302.0529] [INSPIRE]. · Zbl 1342.83352
[24] C. Damian and O. Loaiza-Brito, More stable de Sitter vacua from S-dual nongeometric fluxes, Phys. Rev.D 88 (2013) 046008 [arXiv:1304.0792] [INSPIRE].
[25] F. Hassler, D. Lüst and S. Massai, On Inflation and de Sitter in Non-Geometric String Backgrounds, Fortsch. Phys.65 (2017) 1700062 [arXiv:1405.2325] [INSPIRE]. · Zbl 1535.83126
[26] J. Blabäck, U.H. Danielsson, G. Dibitetto and S.C. Vargas, Universal dS vacua in STU-models, JHEP10 (2015) 069 [arXiv:1505.04283] [INSPIRE]. · Zbl 1388.83746
[27] M. Cicoli, S. de Alwis and A. Westphal, Heterotic Moduli Stabilisation, JHEP10 (2013) 199 [arXiv:1304.1809] [INSPIRE].
[28] S.L. Parameswaran and A. Westphal, de Sitter string vacua from perturbative Kähler corrections and consistent D-terms, JHEP10 (2006) 079 [hep-th/0602253] [INSPIRE].
[29] C. Kounnas, D. Lüst and N. Toumbas, R2inflation from scale invariant supergravity and anomaly free superstrings with fluxes, Fortsch. Phys.63 (2015) 12 [arXiv:1409.7076] [INSPIRE]. · Zbl 1338.83217
[30] A. Achúcarro, P. Ortiz and K. Sousa, A new class of de Sitter vacua in String Theory Compactifications, Phys. Rev.D 94 (2016) 086012 [arXiv:1510.01273] [INSPIRE].
[31] M. Cicoli, F. Quevedo and R. Valandro, de Sitter from T-branes, JHEP03 (2016) 141 [arXiv:1512.04558] [INSPIRE].
[32] R. Blumenhagen et al., A Flux-Scaling Scenario for High-Scale Moduli Stabilization in String Theory, Nucl. Phys.B 897 (2015) 500 [arXiv:1503.07634] [INSPIRE]. · Zbl 1329.81304
[33] R. Blumenhagen, C. Damian, A. Font, D. Herschmann and R. Sun, The Flux-Scaling Scenario: de Sitter Uplift and Axion Inflation, Fortsch. Phys.64 (2016) 536 [arXiv:1510.01522] [INSPIRE]. · Zbl 1339.83079
[34] D. Gallego, M.C.D. Marsh, B. Vercnocke and T. Wrase, A New Class of de Sitter Vacua in Type IIB Large Volume Compactifications, JHEP10 (2017) 193 [arXiv:1707.01095] [INSPIRE]. · Zbl 1383.83207
[35] T. Kobayashi, N. Omoto, H. Otsuka and T.H. Tatsuishi, Radiative Kähler moduli stabilization, Phys. Rev.D 97 (2018) 106006 [arXiv:1711.10274] [INSPIRE].
[36] I. Antoniadis, Y. Chen and G.K. Leontaris, Perturbative moduli stabilisation in type IIB/F-theory framework, Eur. Phys. J.C 78 (2018) 766 [arXiv:1803.08941] [INSPIRE].
[37] R. Kallosh and T. Wrase, dS Supergravity from 10d, Fortsch. Phys.67 (2019) 1800071 [arXiv:1808.09427] [INSPIRE]. · Zbl 1535.83144
[38] G.W. Gibbons, Aspects of Supergravity Theories, in Supersymmetry, Supergravity and Related Topics, F. del Aguila, J.A. de Azcárraga and L.E. Ibáñez eds., World Scientific (1985), pp. 346-351.
[39] B. de Wit, D.J. Smit and N.D. Hari Dass, Residual Supersymmetry of Compactified D = 10 Supergravity, Nucl. Phys.B 283 (1987) 165 [INSPIRE].
[40] J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys.A 16 (2001) 822 [hep-th/0007018] [INSPIRE]. · Zbl 1005.81075
[41] M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary Constraints on Type IIA String Theory, JHEP12 (2007) 095 [arXiv:0711.2512] [INSPIRE]. · Zbl 1246.81259
[42] P.J. Steinhardt and D. Wesley, Dark Energy, Inflation and Extra Dimensions, Phys. Rev.D 79 (2009) 104026 [arXiv:0811.1614] [INSPIRE].
[43] C. Caviezel, P. Koerber, S. Körs, D. Lüst, T. Wrase and M. Zagermann, On the Cosmology of Type IIA Compactifications on SU(3)-structure Manifolds, JHEP04 (2009) 010 [arXiv:0812.3551] [INSPIRE]. · Zbl 1158.83320
[44] R. Flauger, S. Paban, D. Robbins and T. Wrase, Searching for slow-roll moduli inflation in massive type IIA supergravity with metric fluxes, Phys. Rev.D 79 (2009) 086011 [arXiv:0812.3886] [INSPIRE].
[45] U.H. Danielsson, S.S. Haque, G. Shiu and T. Van Riet, Towards Classical de Sitter Solutions in String Theory, JHEP09 (2009) 114 [arXiv:0907.2041] [INSPIRE].
[46] C. Caviezel, T. Wrase and M. Zagermann, Moduli Stabilization and Cosmology of Type IIB on SU(2)-Structure Orientifolds, JHEP04 (2010) 011 [arXiv:0912.3287] [INSPIRE]. · Zbl 1272.81144
[47] T. Wrase and M. Zagermann, On Classical de Sitter Vacua in String Theory, Fortsch. Phys.58 (2010) 906 [arXiv:1003.0029] [INSPIRE].
[48] T. Van Riet, On classical de Sitter solutions in higher dimensions, Class. Quant. Grav.29 (2012) 055001 [arXiv:1111.3154] [INSPIRE]. · Zbl 1237.83039
[49] S.R. Green, E.J. Martinec, C. Quigley and S. Sethi, Constraints on String Cosmology, Class. Quant. Grav.29 (2012) 075006 [arXiv:1110.0545] [INSPIRE]. · Zbl 1241.83081
[50] F.F. Gautason, D. Junghans and M. Zagermann, On Cosmological Constants from α′-Corrections, JHEP06 (2012) 029 [arXiv:1204.0807] [INSPIRE]. · Zbl 1342.83298
[51] D. Kutasov, T. Maxfield, I. Melnikov and S. Sethi, Constraining de Sitter Space in String Theory, Phys. Rev. Lett.115 (2015) 071305 [arXiv:1504.00056] [INSPIRE].
[52] C. Quigley, Gaugino Condensation and the Cosmological Constant, JHEP06 (2015) 104 [arXiv:1504.00652] [INSPIRE]. · Zbl 1388.83692
[53] D. Andriot and J. Blabäck, Refining the boundaries of the classical de Sitter landscape, JHEP03 (2017) 102 [Erratum JHEP03 (2018) 083] [arXiv:1609.00385] [INSPIRE]. · Zbl 1377.83131
[54] D. Andriot, On classical de Sitter and Minkowski solutions with intersecting branes, JHEP03 (2018) 054 [arXiv:1710.08886] [INSPIRE]. · Zbl 1388.83717
[55] D. Andriot, New constraints on classical de Sitter: flirting with the swampland, Fortsch. Phys.67 (2019) 1800103 [arXiv:1807.09698] [INSPIRE]. · Zbl 1535.83134
[56] L. Covi, M. Gomez-Reino, C. Gross, J. Louis, G.A. Palma and C.A. Scrucca, de Sitter vacua in no-scale supergravities and Calabi-Yau string models, JHEP06 (2008) 057 [arXiv:0804.1073] [INSPIRE].
[57] G. Shiu and Y. Sumitomo, Stability Constraints on Classical de Sitter Vacua, JHEP09 (2011) 052 [arXiv:1107.2925] [INSPIRE]. · Zbl 1301.81243
[58] U.H. Danielsson, G. Shiu, T. Van Riet and T. Wrase, A note on obstinate tachyons in classical dS solutions, JHEP03 (2013) 138 [arXiv:1212.5178] [INSPIRE]. · Zbl 1342.81416
[59] D. Junghans, Tachyons in Classical de Sitter Vacua, JHEP06 (2016) 132 [arXiv:1603.08939] [INSPIRE]. · Zbl 1388.83832
[60] D. Junghans and M. Zagermann, A Universal Tachyon in Nearly No-scale de Sitter Compactifications, JHEP07 (2018) 078 [arXiv:1612.06847] [INSPIRE]. · Zbl 1395.83127
[61] T.D. Brennan, F. Carta and C. Vafa, The String Landscape, the Swampland and the Missing Corner, PoS(TASI2017)015 (2017) [arXiv:1711.00864] [INSPIRE].
[62] U.H. Danielsson and T. Van Riet, What if string theory has no de Sitter vacua?, Int. J. Mod. Phys.D 27 (2018) 1830007 [arXiv:1804.01120] [INSPIRE]. · Zbl 1433.83002
[63] G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland, arXiv:1806.08362 [INSPIRE].
[64] M. Cicoli, S. de Alwis, A. Maharana, F. Muia and F. Quevedo, de Sitter vs. Quintessence in String Theory, Fortsch. Phys.67 (2019) 1800079 [arXiv:1808.08967] [INSPIRE]. · Zbl 1535.81195
[65] Y. Akrami, R. Kallosh, A.D. Linde and V. Vardanyan, The Landscape, the Swampland and the Era of Precision Cosmology, Fortsch. Phys.67 (2019) 1800075 [arXiv:1808.09440] [INSPIRE]. · Zbl 1535.83121
[66] E. Ó. Colgáin, M.H.P.M. Van Putten and H. Yavartanoo, Observational consequences of H0tension in de Sitter Swampland, arXiv:1807.07451 [INSPIRE].
[67] L. Heisenberg, M. Bartelmann, R. Brandenberger and A. Refregier, Dark Energy in the Swampland, Phys. Rev.D 98 (2018) 123502 [arXiv:1808.02877] [INSPIRE]. · Zbl 1476.85002
[68] C. Damian and O. Loaiza-Brito, Two-Field Axion Inflation and the Swampland Constraint in the Flux-Scaling Scenario, Fortsch. Phys.67 (2019) 1800072 [arXiv:1808.03397] [INSPIRE]. · Zbl 1535.83138
[69] C. Han, S. Pi and M. Sasaki, Quintessence Saves Higgs Instability, arXiv:1809.05507 [INSPIRE].
[70] A. Ashoorioon, Rescuing Single Field Inflation from the Swampland, Phys. Lett.B 790 (2019) 568 [arXiv:1810.04001] [INSPIRE].
[71] J.J. Heckman, C. Lawrie, L. Lin and G. Zoccarato, F-theory and Dark Energy, arXiv:1811.01959 [INSPIRE].
[72] F. Denef, A. Hebecker and T. Wrase, de Sitter swampland conjecture and the Higgs potential, Phys. Rev.D 98 (2018) 086004 [arXiv:1807.06581] [INSPIRE].
[73] J.P. Conlon, The de Sitter swampland conjecture and supersymmetric AdS vacua, Int. J. Mod. Phys.A 33 (2018) 1850178 [arXiv:1808.05040] [INSPIRE].
[74] C. Roupec and T. Wrase, de Sitter Extrema and the Swampland, Fortsch. Phys.67 (2019) 1800082 [arXiv:1807.09538] [INSPIRE]. · Zbl 1535.83133
[75] H. Murayama, M. Yamazaki and T.T. Yanagida, Do We Live in the Swampland?, JHEP12 (2018) 032 [arXiv:1809.00478] [INSPIRE]. · Zbl 1405.83014
[76] K. Choi, D. Chway and C.S. Shin, The dS swampland conjecture with the electroweak symmetry and QCD chiral symmetry breaking, JHEP11 (2018) 142 [arXiv:1809.01475] [INSPIRE].
[77] K. Hamaguchi, M. Ibe and T. Moroi, The swampland conjecture and the Higgs expectation value, JHEP12 (2018) 023 [arXiv:1810.02095] [INSPIRE].
[78] Y. Olguín-Trejo, S.L. Parameswaran, G. Tasinato and I. Zavala, Runaway Quintessence, Out of the Swampland, JCAP01 (2019) 031 [arXiv:1810.08634] [INSPIRE].
[79] J.J. Blanco-Pillado, M.A. Urkiola and J.M. Wachter, Racetrack Potentials and the de Sitter Swampland Conjectures, JHEP01 (2019) 187 [arXiv:1811.05463] [INSPIRE]. · Zbl 1409.83177
[80] D. Andriot, On the de Sitter swampland criterion, Phys. Lett.B 785 (2018) 570 [arXiv:1806.10999] [INSPIRE]. · Zbl 1398.83116
[81] S.K. Garg and C. Krishnan, Bounds on Slow Roll and the de Sitter Swampland, arXiv:1807.05193 [INSPIRE].
[82] H. Ooguri, E. Palti, G. Shiu and C. Vafa, Distance and de Sitter Conjectures on the Swampland, Phys. Lett.B 788 (2019) 180 [arXiv:1810.05506] [INSPIRE].
[83] G. Dvali and C. Gomez, On Exclusion of Positive Cosmological Constant, Fortsch. Phys.67 (2019) 1800092 [arXiv:1806.10877] [INSPIRE]. · Zbl 1535.83028
[84] G. Dvali, C. Gomez and S. Zell, Quantum Breaking Bound on de Sitter and Swampland, Fortsch. Phys.67 (2019) 1800094 [arXiv:1810.11002] [INSPIRE]. · Zbl 1535.83124
[85] S.K. Garg, C. Krishnan and M. Zaid Zaz, Bounds on Slow Roll at the Boundary of the Landscape, JHEP03 (2019) 029 [arXiv:1810.09406] [INSPIRE].
[86] H. Ooguri and C. Vafa, On the Geometry of the String Landscape and the Swampland, Nucl. Phys.B 766 (2007) 21 [hep-th/0605264] [INSPIRE]. · Zbl 1117.81117
[87] G.W. Gibbons and S.W. Hawking, Cosmological Event Horizons, Thermodynamics and Particle Creation, Phys. Rev.D 15 (1977) 2738 [INSPIRE].
[88] R. Bousso, A Covariant entropy conjecture, JHEP07 (1999) 004 [hep-th/9905177] [INSPIRE]. · Zbl 0951.83011
[89] J. Moritz and T. Van Riet, Racing through the swampland: de Sitter uplift vs. weak gravity, JHEP09 (2018) 099 [arXiv:1805.00944] [INSPIRE]. · Zbl 1398.83109
[90] N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The String landscape, black holes and gravity as the weakest force, JHEP06 (2007) 060 [hep-th/0601001] [INSPIRE].
[91] K. Dasgupta, M. Emelin, E. McDonough and R. Tatar, Quantum Corrections and the de Sitter Swampland Conjecture, JHEP01 (2019) 145 [arXiv:1808.07498] [INSPIRE]. · Zbl 1409.83057
[92] U.H. Danielsson, The quantum swampland, arXiv:1809.04512 [INSPIRE]. · Zbl 1415.83006
[93] F. Baume and E. Palti, Backreacted Axion Field Ranges in String Theory, JHEP08 (2016) 043 [arXiv:1602.06517] [INSPIRE]. · Zbl 1390.83324
[94] D. Kläwer and E. Palti, Super-Planckian Spatial Field Variations and Quantum Gravity, JHEP01 (2017) 088 [arXiv:1610.00010] [INSPIRE]. · Zbl 1373.83044
[95] I. Valenzuela, Backreaction Issues in Axion Monodromy and Minkowski 4-forms, JHEP06 (2017) 098 [arXiv:1611.00394] [INSPIRE]. · Zbl 1380.85022
[96] R. Blumenhagen, I. Valenzuela and F. Wolf, The Swampland Conjecture and F-term Axion Monodromy Inflation, JHEP07 (2017) 145 [arXiv:1703.05776] [INSPIRE]. · Zbl 1380.85012
[97] E. Palti, The Weak Gravity Conjecture and Scalar Fields, JHEP08 (2017) 034 [arXiv:1705.04328] [INSPIRE]. · Zbl 1381.83074
[98] M. Cicoli, D. Ciupke, C. Mayrhofer and P. Shukla, A Geometrical Upper Bound on the Inflaton Range, JHEP05 (2018) 001 [arXiv:1801.05434] [INSPIRE]. · Zbl 1391.83136
[99] T.W. Grimm, E. Palti and I. Valenzuela, Infinite Distances in Field Space and Massless Towers of States, JHEP08 (2018) 143 [arXiv:1802.08264] [INSPIRE]. · Zbl 1396.81151
[100] B. Heidenreich, M. Reece and T. Rudelius, Emergence of Weak Coupling at Large Distance in Quantum Gravity, Phys. Rev. Lett.121 (2018) 051601 [arXiv:1802.08698] [INSPIRE]. · Zbl 1388.81939
[101] R. Blumenhagen, D. Kläwer, L. Schlechter and F. Wolf, The Refined Swampland Distance Conjecture in Calabi-Yau Moduli Spaces, JHEP06 (2018) 052 [arXiv:1803.04989] [INSPIRE]. · Zbl 1395.81251
[102] T.W. Grimm, C. Li and E. Palti, Infinite Distance Networks in Field Space and Charge Orbits, JHEP03 (2019) 016 [arXiv:1811.02571] [INSPIRE]. · Zbl 1414.81184
[103] A. Hebecker, P. Henkenjohann and L.T. Witkowski, Flat Monodromies and a Moduli Space Size Conjecture, JHEP12 (2017) 033 [arXiv:1708.06761] [INSPIRE]. · Zbl 1383.83176
[104] A. Landete and G. Shiu, Mass Hierarchies and Dynamical Field Range, Phys. Rev.D 98 (2018) 066012 [arXiv:1806.01874] [INSPIRE].
[105] A. Hebecker, D. Junghans and A. Schachner, Large Field Ranges from Aligned and Misaligned Winding, arXiv:1812.05626 [INSPIRE]. · Zbl 1414.83088
[106] M. Dine and N. Seiberg, Is the Superstring Weakly Coupled?, Phys. Lett.B 162 (1985) 299 [INSPIRE].
[107] A. Hebecker and T. Wrase, The Asymptotic dS Swampland Conjecture — a Simplified Derivation and a Potential Loophole, Fortsch. Phys.67 (2019) 1800097 [arXiv:1810.08182] [INSPIRE]. · Zbl 1535.83016
[108] E. Silverstein, Simple de Sitter Solutions, Phys. Rev.D 77 (2008) 106006 [arXiv:0712.1196] [INSPIRE].
[109] S.S. Haque, G. Shiu, B. Underwood and T. Van Riet, Minimal simple de Sitter solutions, Phys. Rev.D 79 (2009) 086005 [arXiv:0810.5328] [INSPIRE].
[110] U.H. Danielsson, P. Koerber and T. Van Riet, Universal de Sitter solutions at tree-level, JHEP05 (2010) 090 [arXiv:1003.3590] [INSPIRE]. · Zbl 1287.81091
[111] U.H. Danielsson, S.S. Haque, P. Koerber, G. Shiu, T. Van Riet and T. Wrase, de Sitter hunting in a classical landscape, Fortsch. Phys.59 (2011) 897 [arXiv:1103.4858] [INSPIRE]. · Zbl 1235.81107
[112] J. Blabäck, U.H. Danielsson and G. Dibitetto, A new light on the darkest corner of the landscape, arXiv:1810.11365 [INSPIRE].
[113] A. Banlaki, A. Chowdhury, C. Roupec and T. Wrase, Scaling limits of dS vacua and the swampland, arXiv:1811.07880 [INSPIRE]. · Zbl 1414.83082
[114] F. Denef, Les Houches Lectures on Constructing String Vacua, Les Houches87 (2008) 483 [arXiv:0803.1194] [INSPIRE].
[115] M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys.79 (2007) 733 [hep-th/0610102] [INSPIRE]. · Zbl 1205.81011
[116] O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type IIA moduli stabilization, JHEP07 (2005) 066 [hep-th/0505160] [INSPIRE].
[117] M.R. Douglas and R. Kallosh, Compactification on negatively curved manifolds, JHEP06 (2010) 004 [arXiv:1001.4008] [INSPIRE]. · Zbl 1290.81113
[118] J. Blabäck, U.H. Danielsson, D. Junghans, T. Van Riet, T. Wrase and M. Zagermann, Smeared versus localised sources in flux compactifications, JHEP12 (2010) 043 [arXiv:1009.1877] [INSPIRE]. · Zbl 1294.81165
[119] J. Blabäck, U.H. Danielsson, D. Junghans, T. Van Riet, T. Wrase and M. Zagermann, The problematic backreaction of SUSY-breaking branes, JHEP08 (2011) 105 [arXiv:1105.4879] [INSPIRE]. · Zbl 1298.81246
[120] J. Blabäck, U.H. Danielsson, D. Junghans, T. Van Riet, T. Wrase and M. Zagermann, (Anti-)Brane backreaction beyond perturbation theory, JHEP02 (2012) 025 [arXiv:1111.2605] [INSPIRE]. · Zbl 1309.81202
[121] F. Saracco and A. Tomasiello, Localized O6-plane solutions with Romans mass, JHEP07 (2012) 077 [arXiv:1201.5378] [INSPIRE]. · Zbl 1397.81284
[122] J. McOrist and S. Sethi, M-theory and Type IIA Flux Compactifications, JHEP12 (2012) 122 [arXiv:1208.0261] [INSPIRE]. · Zbl 1397.81270
[123] F.F. Gautason, M. Schillo, T. Van Riet and M. Williams, Remarks on scale separation in flux vacua, JHEP03 (2016) 061 [arXiv:1512.00457] [INSPIRE]. · Zbl 1388.83618
[124] O. DeWolfe and S.B. Giddings, Scales and hierarchies in warped compactifications and brane worlds, Phys. Rev.D 67 (2003) 066008 [hep-th/0208123] [INSPIRE]. · Zbl 1222.83165
[125] S.B. Giddings and A. Maharana, Dynamics of warped compactifications and the shape of the warped landscape, Phys. Rev.D 73 (2006) 126003 [hep-th/0507158] [INSPIRE].
[126] A.R. Frey and A. Maharana, Warped spectroscopy: Localization of frozen bulk modes, JHEP08 (2006) 021 [hep-th/0603233] [INSPIRE].
[127] P. Koerber and L. Martucci, From ten to four and back again: How to generalize the geometry, JHEP08 (2007) 059 [arXiv:0707.1038] [INSPIRE]. · Zbl 1326.81162
[128] G. Shiu, G. Torroba, B. Underwood and M.R. Douglas, Dynamics of Warped Flux Compactifications, JHEP06 (2008) 024 [arXiv:0803.3068] [INSPIRE].
[129] M.R. Douglas and G. Torroba, Kinetic terms in warped compactifications, JHEP05 (2009) 013 [arXiv:0805.3700] [INSPIRE].
[130] A.R. Frey, G. Torroba, B. Underwood and M.R. Douglas, The Universal Kähler Modulus in Warped Compactifications, JHEP01 (2009) 036 [arXiv:0810.5768] [INSPIRE]. · Zbl 1243.83057
[131] L. Martucci, On moduli and effective theory of N = 1 warped flux compactifications, JHEP05 (2009) 027 [arXiv:0902.4031] [INSPIRE].
[132] B. Underwood, A Breathing Mode for Warped Compactifications, Class. Quant. Grav.28 (2011) 195013 [arXiv:1009.4200] [INSPIRE]. · Zbl 1228.83107
[133] A.R. Frey and J. Roberts, The Dimensional Reduction and Kähler Metric of Forms In Flux and Warping, JHEP10 (2013) 021 [arXiv:1308.0323] [INSPIRE]. · Zbl 1342.83472
[134] L. Martucci, Warping the Kähler potential of F-theory/IIB flux compactifications, JHEP03 (2015) 067 [arXiv:1411.2623] [INSPIRE]. · Zbl 1388.81583
[135] T.W. Grimm, T.G. Pugh and M. Weissenbacher, The effective action of warped M-theory reductions with higher derivative terms. Part I, JHEP01 (2016) 142 [arXiv:1412.5073] [INSPIRE]. · Zbl 1388.83814
[136] T.W. Grimm, T.G. Pugh and M. Weissenbacher, The effective action of warped M-theory reductions with higher-derivative terms. Part II, JHEP12 (2015) 117 [arXiv:1507.00343] [INSPIRE]. · Zbl 1388.83813
[137] L. Martucci, Warped Kähler potentials and fluxes, JHEP01 (2017) 056 [arXiv:1610.02403] [INSPIRE]. · Zbl 1373.83111
[138] E. Witten, Dimensional Reduction of Superstring Models, Phys. Lett.B 155 (1985) 151 [INSPIRE].
[139] C.P. Burgess, A. Font and F. Quevedo, Low-Energy Effective Action for the Superstring, Nucl. Phys.B 272 (1986) 661 [INSPIRE].
[140] U.H. Danielsson, F.F. Gautason and T. Van Riet, Unstoppable brane-flux decay ofD6¯\[ \overline{\text{D}6}\] branes, JHEP03 (2017) 141 [arXiv:1609.06529] [INSPIRE]. · Zbl 1377.81137
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.