×

Quantum informational properties of the Landau-Streater channel. (English) Zbl 1414.81065

Summary: We study the Landau-Streater quantum channel \({\Phi} : \mathcal{B(H}_d) \mapsto \mathcal{B(H}_d)\), whose Kraus operators are proportional to the irreducible unitary representation of \(\operatorname{SU}(2)\) generators of dimension \(d\). We establish \(\operatorname{SU}(2)\) covariance for all \(d\) and \(\operatorname{U}(3)\) covariance for \(d=3\). Using the theory of angular momentum, we explicitly find the spectrum and the minimal output entropy of \(\Phi\). Negative eigenvalues in the spectrum of \(\Phi\) indicate that the channel cannot be obtained as a result of Hermitian Markovian quantum dynamics. Degradability and antidegradability of the Landau-Streater channel is fully analyzed. We calculate classical and entanglement-assisted capacities of \(\Phi\). Quantum capacity of \(\Phi\) vanishes if \(d=2, 3\) and is strictly positive if \(d\geq 4\). We show that the channel \(\Phi\otimes\Phi\) does not annihilate entanglement and preserves entanglement of some states with Schmidt rank 2 if \(d\geq 3\).{
©2019 American Institute of Physics}

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
94A40 Channel models (including quantum) in information and communication theory
46L07 Operator spaces and completely bounded maps
81R20 Covariant wave equations in quantum theory, relativistic quantum mechanics
94A17 Measures of information, entropy

References:

[1] Holevo, A. S., Quantum Systems, Channels, Information (2012) · Zbl 1283.94026
[2] Landau, L. J.; Streater, R. F., On Birkhoff’s theorem for doubly stochastic completely positive maps of matrix algebras, Linear Algebra Appl., 193, 107 (1993) · Zbl 0797.15021 · doi:10.1016/0024-3795(93)90274-r
[3] Varshalovich, D. A.; Moskalev, A. N.; Khersonskii, V. K., Theory of Angular Momentum (1988)
[4] Bužek, V.; Hilery, M.; Werner, R. F., Optimal manipulations with qubits: Universal-NOT gate, Phys. Rev. A, 60, R2626 (1999) · doi:10.1103/physreva.60.r2626
[5] Filippov, S. N.; Magadov, K. Y., Spin polarization-scaling quantum maps and channels, Lobachevskii J. Math., 39, 65 (2018) · Zbl 1386.81035 · doi:10.1134/s1995080218010109
[6] Werner, R. F.; Holevo, A. S., Counterexample to an additivity conjecture for output purity of quantum channels, J. Math. Phys., 43, 4353 (2002) · Zbl 1060.94008 · doi:10.1063/1.1498491
[7] Holevo, A. S., A note on covariant dynamical semigroups, Rep. Math. Phys., 32, 211 (1993) · Zbl 0794.47026 · doi:10.1016/0034-4877(93)90014-6
[8] Holevo, A. S., Covariant quantum Markovian evolutions, J. Math. Phys., 37, 1812 (1996) · Zbl 0869.60102 · doi:10.1063/1.531481
[9] Datta, N.; Tomamichel, M.; Wilde, M. M., On the second-order asymptotics for entanglement-assisted communication, Quantum Inf. Process., 15, 2569 (2016) · Zbl 1348.81133 · doi:10.1007/s11128-016-1272-5
[10] Mozrzymas, M.; Studziński, M.; Datta, N., Structure of irreducibly covariant quantum channels for finite groups, J. Math. Phys., 58, 052204 (2017) · Zbl 1366.81103 · doi:10.1063/1.4983710
[11] Al Nuwairan, M., The extreme points of SU(2)-irreducibly covariant channels, Int. J. Math., 25, 1450048 (2014) · Zbl 1321.81012 · doi:10.1142/s0129167x14500487
[12] Datta, N., Multiplicativity of maximal p-norms in Werner-Holevo channels for 1 ≤ p ≤ 2
[13] Datta, N.; Holevo, A. S.; Suhov, Y., Additivity for transpose depolarizing channels, Int. J. Quantum Inf., 04, 85 (2006) · Zbl 1090.81014 · doi:10.1142/s0219749906001633
[14] King, C., The capacity of the quantum depolarizing channel, IEEE Trans. Inf. Theory, 49, 221 (2003) · Zbl 1063.94028 · doi:10.1109/tit.2002.806153
[15] Wolf, M. M.; Cirac, J. I., Dividing quantum channels, Commun. Math. Phys., 279, 147 (2008) · Zbl 1149.81007 · doi:10.1007/s00220-008-0411-y
[16] Filippov, S. N.; Piilo, J.; Maniscalco, S.; Ziman, M., Divisibility of quantum dynamical maps and collision models, Phys. Rev. A, 96, 032111 (2017) · doi:10.1103/physreva.96.032111
[17] Filippov, S. N.; Man’ko, V. I., Inverse spin-s portrait and representation of qubit states by single probability vectors, J. Russ. Laser Res., 31, 32 (2010) · doi:10.1007/s10946-010-9122-x
[18] Filippov, S. N.; Man’ko, V. I., Spin tomography and star-product kernel for qubits and qutrits, J. Russ. Laser Res., 30, 129 (2009) · doi:10.1007/s10946-009-9065-2
[19] Chruściński, D.; Macchiavello, C.; Maniscalco, S., Detecting non-Markovianity of quantum evolution via spectra of dynamical maps, Phys. Rev. Lett., 118, 080404 (2017) · doi:10.1103/physrevlett.118.080404
[20] Pečarić, J. E.; Proschan, F.; Tong, Y. L., Convex functions, partial orderings, and statistical applications, Mathematics in Science and Engineering (1992) · Zbl 0749.26004
[21] Michalakis, S., Multiplicativity of the maximal output 2-norm for depolarized Werner-Holevo channels, J. Math. Phys., 48, 122102 (2007) · Zbl 1153.81403 · doi:10.1063/1.2818737
[22] King, C., Additivity for unital qubit channels, J. Math. Phys., 43, 4641 (2002) · Zbl 1060.94006 · doi:10.1063/1.1500791
[23] Nielsen, M. A.; Chuang, I. L., Quantum Computation and Quantum Information (2000) · Zbl 1049.81015
[24] Holevo, A. S., Complementary channels and the additivity problem, Theory Probab. Appl., 51, 92 (2007) · Zbl 1113.81022 · doi:10.1137/s0040585x97982244
[25] King, C.; Matsumoto, K.; Nathanson, M.; Ruskai, M. B., Properties of conjugate channels with applications to additivity and multiplicativity, Markov Process Relat. Fields, 13, 391 (2007) · Zbl 1139.81020
[26] Cubitt, T. S.; Ruskai, M. B.; Smith, G., The structure of degradable quantum channels, J. Math. Phys., 49, 102104 (2008) · Zbl 1152.81389 · doi:10.1063/1.2953685
[27] Ruskai, M. B., Qubit entanglement breaking channels, Rev. Math. Phys., 15, 643 (2003) · Zbl 1080.81007 · doi:10.1142/s0129055x03001710
[28] Choi, M.-D., Completely positive linear maps on complex matrices, Linear Algebra Appl., 10, 285 (1975) · Zbl 0327.15018 · doi:10.1016/0024-3795(75)90075-0
[29] Schumacher, B.; Westmoreland, M. D., Sending classical information via noisy quantum channels, Phys. Rev. A, 56, 131 (1997) · doi:10.1103/physreva.56.131
[30] Holevo, A. S., The capacity of quantum channel with general signal states, IEEE Trans. Inf. Theory, 44, 269 (1998) · Zbl 0897.94008 · doi:10.1109/18.651037
[31] Holevo, A. S., Remarks on the classical capacity of quantum channel · Zbl 1395.81065
[32] Bennett, C. H.; Shor, P. W.; Smolin, J. A.; Thapliyal, A. V., Entanglement-assisted classical capacity of noisy quantum channel, Phys. Rev. Lett., 83, 3081 (1999) · doi:10.1103/physrevlett.83.3081
[33] Bennett, C. H.; Shor, P. W.; Smolin, J. A.; Thapliyal, A. V., Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem, IEEE Trans. Inf. Theory, 48, 2637 (2002) · Zbl 1062.94011 · doi:10.1109/tit.2002.802612
[34] Holevo, A. S., On entanglement-assisted classical capacity, J. Math. Phys., 43, 4326 (2002) · Zbl 1060.94003 · doi:10.1063/1.1495877
[35] Barnum, H.; Nielsen, M. A.; Schumacher, B., Information transmission through a noisy quantum channel, Phys. Rev. A, 57, 4153 (1998) · doi:10.1103/physreva.57.4153
[36] Schumacher, B.; Nielsen, M. A., Quantum data processing and error correction, Phys. Rev. A, 54, 2629 (1996) · doi:10.1103/physreva.54.2629
[37] Devetak, I., The private classical capacity and quantum capacity of a quantum channel, IEEE Trans. Inf. Theory, 51, 44 (2005) · Zbl 1293.94063 · doi:10.1109/tit.2004.839515
[38] Devetak, I.; Shor, P. W., The capacity of a quantum channel for simultaneous transmission of classical and quantum information, Commun. Math. Phys., 256, 287 (2005) · Zbl 1068.81010 · doi:10.1007/s00220-005-1317-6
[39] Giovannetti, V.; Fazio, R., Information-capacity description of spin-chain correlations, Phys. Rev. A, 71, 032314 (2005) · doi:10.1103/physreva.71.032314
[40] Werner, R. F., Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model, Phys. Rev. A, 40, 4277 (1989) · Zbl 1371.81145 · doi:10.1103/physreva.40.4277
[41] Horodecki, M.; Shor, P. W.; Ruskai, M. B., Entanglement breaking channels, Rev. Math. Phys., 15, 629 (2003) · Zbl 1080.81006 · doi:10.1142/s0129055x03001709
[42] Moravčíková, L.; Ziman, M., Entanglement-annihilating and entanglement-breaking channels, J. Phys. A: Math. Theor., 43, 275306 (2010) · Zbl 1193.81011 · doi:10.1088/1751-8113/43/27/275306
[43] Filippov, S. N.; Frizen, V. V.; Kolobova, D. V., Ultimate entanglement robustness of two-qubit states against general local noises, Phys. Rev. A, 97, 012322 (2018) · doi:10.1103/physreva.97.012322
[44] Lami, L.; Huber, M., Bipartite depolarizing maps, J. Math. Phys., 57, 092201 (2016) · Zbl 1347.81029 · doi:10.1063/1.4962339
[45] Filippov, S. N.; Magadov, K. Y.; Jivulescu, M. A., Absolutely separating quantum maps and channels, New J. Phys., 19, 083010 (2017) · Zbl 1516.81047 · doi:10.1088/1367-2630/aa7e06
[46] Peres, A., Separability criterion for density matrices, Phys. Rev. Lett., 77, 1413 (1996) · Zbl 0947.81003 · doi:10.1103/physrevlett.77.1413
[47] Horodecki, M.; Horodecki, P.; Horodecki, R., Separability of mixed states: Necessary and sufficient conditions, Phys. Lett. A, 223, 1 (1996) · Zbl 1037.81501 · doi:10.1016/s0375-9601(96)00706-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.