×

Local regularity of super-potentials and equidistribution of positive closed currents on \({\mathbb {P}}^k\). (English) Zbl 1414.32018

Let \(f:\mathbb{P}^k\to\mathbb{P}^k\) be a holomorphic map of algebraic degree \(d\geq2\). An important tool in the study of the dynamics of \(f\) is its dynamical Green current \(T\), defined by \(T=\lim_{n\to\infty}d^{-n}(f^n)^\star\omega\), where \(\omega\) is the Fubini-Study form on \(\mathbb{P}^k\). The author proves the following general equidistribution result towards \(T\): There exists an invariant analytic subset \(E\) for \(f\) such that if \(S\) is a positive closed current of bidegree \((p,p)\) and unit mass on \(\mathbb{P}^k\) with bounded super-potential near \(E\), then \(\lim_{n\to\infty}d^{-pn}(f^n)^\star S=T^p\) in the sense of currents. This generalizes an earlier result of the author [Trans. Am. Math. Soc. 368, No. 5, 3359–3388 (2016; Zbl 1418.37075)], where the assumption was that \(S\) is smooth near \(E\).
The notion of super-potentials of positive closed currents was introduced and developed by T.-C. Dinh and N. Sibony [Acta Math. 203, No. 1, 1–82 (2009; Zbl 1227.32024)], who gave many applications for it to complex dynamics in recent years. The notions of local continuity and local boundedness of super-potentials are introduced and studied by the author in the present paper, as main tool in proving the above theorem. In particular, it is shown that if a positive closed current \(S\) has bounded super-potential on an open set \(W\), then \(S\) has zero Lelong number at each point of \(W\). The author also shows that \(S\) has bounded, resp. continuous, super-potential near an analytic set \(E\) if and only if \(S\) is a PB, resp. PC, current near \(E\). The notions of PB/PC currents are due to Dinh and Sibony [loc. cit.].
The author also proves a similar equidistribution result in the case when \(f\) is a regular polynomial automorphism of \(\mathbb{C}^k\).

MSC:

32H50 Iteration of holomorphic maps, fixed points of holomorphic maps and related problems for several complex variables
32U40 Currents
32U25 Lelong numbers
32H02 Holomorphic mappings, (holomorphic) embeddings and related questions in several complex variables
37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets

References:

[1] Ahn, T, Equidistribution in higher codimension for holomorphic endomorphisms of \(\mathbb{P}^k\), Trans. Am. Math. Soc., 368, 3359-3388, (2016) · Zbl 1418.37075 · doi:10.1090/tran/6539
[2] Briend, J-Y; Duval, J, Deux caractérisations de la measure d’équilibre d’un endomorphisme de \(\mathbb{P}^k(\mathbb{C})\), Publ. Math. Inst. Hautes Études Sci., 93, 145-159, (2001) · Zbl 1010.37004 · doi:10.1007/s10240-001-8190-4
[3] Demailly, J.-P.: Complex Analytic and Differential Geometry. http://www.fourier.ujf-grenoble.fr/ demailly · Zbl 1020.37026
[4] Dinh, T-C, Analytic multiplicative cocycles over holomorphic dynamical systems, Complex Var. Elliptic Equ., 54, 243-251, (2009) · Zbl 1161.37329 · doi:10.1080/17476930902759387
[5] Dinh, T-C; Sibony, N, Green currents for holomorphic automorphisms of compact Kähler manifolds, J. Am. Math. Soc., 18, 291-312, (2005) · Zbl 1066.32024 · doi:10.1090/S0894-0347-04-00474-6
[6] Dinh, T-C; Sibony, N, Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv., 81, 221-258, (2006) · Zbl 1094.32005 · doi:10.4171/CMH/50
[7] Dinh, T-C; Sibony, N, Equidistribution towards the Green current for holomorphic maps, Ann. Sci. Éc. Norm. Supér., 41, 307-336, (2008) · Zbl 1160.32029 · doi:10.24033/asens.2069
[8] Dinh, T-C; Sibony, N, Super-potentials of positive closed currents, intersection theory and dynamics, Acta Math., 203, 1-82, (2009) · Zbl 1227.32024 · doi:10.1007/s11511-009-0038-7
[9] Dinh, T-C; Sibony, N, Equidistribution speed for endomorphisms of proejctive spaces, Math. Ann., 347, 613-626, (2010) · Zbl 1206.37023 · doi:10.1007/s00208-009-0445-2
[10] Dinh, T-C; Sibony, N, Super-potentials for currents on compact Kähler manifolds and dynamics of automorphisms, J. Algebr. Geom., 19, 473-529, (2010) · Zbl 1202.32033 · doi:10.1090/S1056-3911-10-00549-7
[11] Favre, C.: Dynamique de applications rationelles. PhD thesis, Université de Paris-Sud, Orsay (2000) · Zbl 1320.37003
[12] Favre, C, Multiplicity of holomorphic functions, Math. Ann., 316, 355-378, (2000) · Zbl 0948.32020 · doi:10.1007/s002080050016
[13] Favre, C; Jonsson, M, Brolin’s theorem for curves in two complex dimensions, Ann. Inst. Fourier (Grenoble), 53, 1461-1501, (2003) · Zbl 1113.32005 · doi:10.5802/aif.1985
[14] Favre, C; Jonsson, M, Eigenvaluations, Ann. Sci. École Norm. Sup., 40, 309-349, (2007) · Zbl 1135.37018 · doi:10.1016/j.ansens.2007.01.002
[15] Freire, A; Lopes, A; Mañé, R, An invariant measure for rational maps, Bol. Soc. Brasil. Mat., 14, 45-62, (1983) · Zbl 0568.58027 · doi:10.1007/BF02584744
[16] Fornæss, J.E., Sibony, N.: Complex dynamics in higher dimensions. In: Gauthier, P.M., Sabidussi, G. (eds.) Complex Potential Theory (Montreal, PQ, 1993), volume 439 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pp. 131-186. Kluwer Academic Publishers (1994) · Zbl 0811.32019
[17] Fornæss, J.E., Sibony, N.: Complex dynamics in higher dimension. II. In: Thomas, B., David, C., D’Angelo, J.P., Siu, Y.-T. (eds.) Modern Methods in Complex Analysis (Princeton, NJ, 1992), volume 137 of Annals of Mathematics Studies, pp. 135-182. Princeton University Press (1995) · Zbl 0847.58059
[18] Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley Classics Library. Wiley, New York (1994) (reprint of the 1978 original edition) · Zbl 0836.14001
[19] Gignac, W, Measures and dynamics on Noetherian spaces, J. Geom. Anal., 24, 1770-1793, (2014) · Zbl 1320.37003 · doi:10.1007/s12220-013-9394-9
[20] Griffiths, P, Complex differential and integral geometry and curvature integrals associated to singularities of complex analytic varieties, Duke Math. J., 45, 427-512, (1978) · Zbl 0409.53048 · doi:10.1215/S0012-7094-78-04522-2
[21] Guedj, V, Equidistribution towards the Green current, Bull. Soc. Math. Fr., 131, 359-372, (2003) · Zbl 1070.37026 · doi:10.24033/bsmf.2446
[22] Harvey, R; Polking, J, Extending analytic objects, Commun. Pure Appl. Math., 28, 701-727, (1975) · Zbl 0323.32013 · doi:10.1002/cpa.3160280603
[23] Ljubich, M, Entropy properties of rational endomorphisms of the Riemann sphere, Ergod. Theory Dyn. Syst., 3, 351-385, (1983) · Zbl 0537.58035 · doi:10.1017/S0143385700002030
[24] Malgrange, B.: Ideals of Differentiable Functions. Oxford University Press, London (1967) · Zbl 0177.18001
[25] Parra, R.: Currents and equidistribution in holomorphic dynamics. PhD thesis, Univ. of Michigan (2011) · Zbl 1066.32024
[26] Russakovskii, A; Shiffman, B, Value distribution for sequences of rational mappings and complex dynamics, Indiana Univ. Math. J., 46, 897-932, (1997) · Zbl 0901.58023 · doi:10.1512/iumj.1997.46.1441
[27] Sibony, N, Dynamique des applications rationnelles de \(\mathbb{P}^k\), Panor. Synthèses, 8, 97-185, (1999) · Zbl 1020.37026
[28] Taflin, J, Equidistribution speed towards the Green current for endomorphisms of \(\mathbb{P}^k\), Adv. Math., 227, 2059-2081, (2011) · Zbl 1258.32004 · doi:10.1016/j.aim.2011.04.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.