×

Distance and eccentric sequences to bound the Wiener index, Hosoya polynomial and the average eccentricity in the strong products of graphs. (English) Zbl 1414.05249

Summary: This paper is concerned with the strong product \(G \boxtimes H\) of two graphs, \(G\) and \(H\), and bounds on the Wiener index, Hosoya polynomial and the average eccentricity in this family of graphs. We first introduce the distance sequence of a connected graph. It is defined as the sequence of the distances between all unordered pairs of vertices. We prove that the distance sequence of any connected graph of given order and size is dominated by the distance sequence of the so-called path-complete graph. This is the main tool to prove general results as, among others, that, if \(G\) is a connected graph of given order and size, then the Wiener index of \(G \boxtimes H\), for every fixed connected graph \(H\), and the Hosoya polynomial \(W(G, x)\), for every \(x \in \mathbb{R}\) with \(x \geq 1\), are maximised if \(G\) is a path-complete graph. We also investigate the average eccentricity of \(G \boxtimes H\). We show that for fixed \(H\), and \(G\) chosen from among all connected graphs of given order \(n\), it is maximised if \(G\) is a path of the same order. We also determine a graph \(G_{n, \delta}\) of order \(n\) and minimum degree \(\delta\) such that for every connected graph \(G\) of order \(n\) and minimum degree \(\delta\), the average eccentricity of \(G \boxtimes H\) never exceeds the average eccentricity of \(G_{n, \delta} \boxtimes H\) by more than 3.

MSC:

05C76 Graph operations (line graphs, products, etc.)
05C12 Distance in graphs
05C31 Graph polynomials
05C40 Connectivity
05C35 Extremal problems in graph theory

References:

[1] Abiad, A.; Brimkov, B.; Erey, A.; Leshock, L.; Martinez-Rivera, X.; Suil, O.; Song, S. Y.; Williford, J., On the Wiener index, distance cospectrality and transmission-regular graphs, Discrete Appl. Math., 230, 1-10 (2017) · Zbl 1368.05035
[2] Buckley, F.; Superville, L., Distance distributions and mean distance problems, (Proceedings of the Third Caribbean Conference on Cmbinatorics and Computing, Bridgetown 1981, 67-76 (1981), University of the West Indies: University of the West Indies Barbados) · Zbl 0482.05036
[3] Casablanca, R. M.; Favaron, O.; Kouider, M., Average distance in the strong product of graphs, Util. Math., 94, 31-48 (2014) · Zbl 1300.05082
[4] Dankelmann, P., On the distance distribution of trees, Discrete Appl. Math., 159, 945-952 (2011), vol. 10 · Zbl 1218.05032
[5] Dankelmann, P.; Erwin, D.; Goddard, W. D.; Mukwembi, S.; Swart, H. C., A characterisation of eccentric sequences of maximal outerplanar graphs, Australas. J. Combin., 58, 3, 376-391 (2014) · Zbl 1296.05054
[6] Dankelmann, P.; Goddard, W. D.; Swart, C. S., The average eccentricity of a graph and its subgraphs, Util. Math., 65, 41-52 (2004) · Zbl 1051.05039
[7] De, N.; Nayeem, S. M.A.; Pal, A., Total eccentricity index of the hierarchical product of graphs, Int. J. Appl. Comput. Math., 1, 3, 503-511 (2015) · Zbl 1392.05059
[8] Dehmer, M.; Shi, Y.; Mowshowitz, A., Discrimination power of graph measures based on complex zeros of the partial Hosoya polynomial, Appl. Math. Comput., 250, 352-355 (2015) · Zbl 1328.05095
[9] Deutsch, E.; Rodriguez-Velazquez, J. A., The Hosoya polynomial of distance-regular graphs, Discrete Appl. Math., 178, 153-156 (2014) · Zbl 1300.05134
[10] Doyle, J. K.; Graver, J. E., Mean distance in a graph, Discrete Math., 17, 147-154 (1977) · Zbl 0361.05045
[11] Entringer, R. C.; Jackson, D. E.; Snyder, D. A., Distance in graphs, Czechoslovak Math. J., 26, 283-296 (1976) · Zbl 0329.05112
[12] Fathalikhani, K.; Faramarzi, H.; Yousefi-Azari, H., Total eccentricity of some graph operations, Electron. Notes Discrete Math., 45, 125-131 (2014) · Zbl 1338.05062
[13] Favaron, O.; Kouider, M.; Mahéo, M., Edge-vulnerability and mean distance, Networks, 19, 493-504 (1989) · Zbl 0673.05051
[14] Guo, H.; Zhou, B.; Lin, H., The Wiener index of uniform hypergraphs, MATCH Commun. Math. Comput. Chem., 78, 133-152 (2017) · Zbl 1471.92434
[15] Gutman, I.; Šoltés, L., The range of the Wiener index and its mean isomer degeneracy, Z. Naturforsch. A, 46, 10, 865-868 (1991)
[16] Hammack, R.; Imrich, W.; Klavžar, S., Handbook of Product Graphs (2011), CRC Press: CRC Press Boca Raton (FL) · Zbl 1283.05001
[17] Harary, F., The maximum connectivity of a graph, Proc. Natl. Acad. Sci., 48, 1142-1146 (1962) · Zbl 0115.41003
[18] Hosoya, H., On some counting polynomials in chemistry, Discrete Appl. Math., 19, 239-257 (1988) · Zbl 0633.05006
[19] Hua, H.; Ning, B., Wiener index, Harary index and hamiltonicity of graphs, MATCH Commun. Math. Comput. Chem., 78, 153-162 (2017) · Zbl 1471.92438
[20] Knor, M.; Majstorović, S.; Škrekovski, R., Graphs whose Wiener index does not change when a specific vertex is removed, Discrete Appl. Math., 238, 126-132 (2018) · Zbl 1380.05048
[21] Lesniak, L., Eccentric sequences in graphs, Period. Math. Hungar., 6, 4, 287-293 (1975) · Zbl 0363.05053
[22] Lovász, L., Combinatorial Problems and Exercises (1979), Akadémiai Kiadó: Akadémiai Kiadó Budapest · Zbl 0439.05001
[23] Peterin, I.; Pleteršek, P., The Wiener index of strong product of graphs, Opuscula Math., 38, 1, 81-94 (2018) · Zbl 1402.05056
[24] Plesník, J., On the sum of all distances in a graph or digraph, J. Graph Theory, 8, 1-24 (1984) · Zbl 0552.05048
[25] Rouvray, D. H., The rich legacy of half century of the Wiener index, (Rouvray, D. H.; King, R. B., Topology in Chemistry - Discrete Mathematics of Molecules (2002), Horwood: Horwood Chichester), 16-37 · Zbl 1207.92056
[26] B.E. Sagan, Y.-N. Yeh, P. Zhang, The Wiener polynomial of a graph. arXiv preprint math/9801011; B.E. Sagan, Y.-N. Yeh, P. Zhang, The Wiener polynomial of a graph. arXiv preprint math/9801011
[27] Slater, P., Counterexample to Randic’s conjecture on distance degree sequences for trees, J. Graph Theory, 6, 89-92 (1982) · Zbl 0484.05031
[28] Šoltés, L., Transmission in graphs: A bound and vertex removing, Math. Slovaca, 41, 11-16 (1991) · Zbl 0765.05097
[29] Tang, Y.; Zhou, B., On average eccentricity, MATCH Commun. Math. Comput. Chem., 67, 405-423 (2012) · Zbl 1289.05054
[30] Tratnik, N.; Žigert Pleteršek, P., Relationship between the Hosoya polynomial and the edge-Hosoya polynomial of trees, MATCH Commun. Math. Comput. Chem., 78, 181-187 (2017) · Zbl 1471.92465
[31] Wang, H.; Amin, A. T., Realizability of a tree with a given sequence as its partial distance distribution, Congr. Numer., 110, 193-199 (1995) · Zbl 0904.05026
[32] Yeh, Y.-N.; Gutman, I., On the sum of all distances in composite graphs, Discrete Math., 135, 359-365 (1994) · Zbl 0814.05033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.