×

Existence and regularity of solutions for an evolution model of perfectly plastic plates. (English) Zbl 1412.74013

Summary: We continue the study of a dynamic evolution model for perfectly plastic plates, recently derived in [the second author and M. G. Mora, Math. Models Methods Appl. Sci. 26, No. 10, 1825–1864 (2016; Zbl 1346.74015)] from three-dimensional Prandtl-Reuss plasticity. We extend the previous existence result by introducing non-zero external forces in the model, and we discuss the regularity of the solutions thus obtained. In particular, we show that the first derivatives with respect to space of the stress tensor are locally square integrable.

MSC:

74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74K20 Plates
49J45 Methods involving semicontinuity and convergence; relaxation

Citations:

Zbl 1346.74015

References:

[1] H. Attouch, Variational Convergence for Functions and Operators, Pitman, London, 1984. · Zbl 0561.49012
[2] J. F. Babadjian; M. G. Mora, Stress regularity in quasi-static perfect plasticity with a pressure dependent yield criterion, Journal of Differential Equations, 264, 5109-5151 (2018) · Zbl 1382.35062 · doi:10.1016/j.jde.2017.12.034
[3] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976. · Zbl 0328.47035
[4] A. Bensoussan; J. Frehse, Asymptotic behaviour of the time-dependent Norton Hoff law in plasticity theory and \(H^1\) regularity, Comment. Math. Univ. Carolinae, 37, 285-304 (1996) · Zbl 0851.35079
[5] H. Brezis, Opérateurs maximaux monotones et semi-groupes de constractions dans les espaces de Hilbert, American Elsevier Publishing Co., Inc., New York, 1973. · Zbl 0252.47055
[6] P. Ciarlet, Mathematical Elasticity. Vol II. Theory of Plates, Studies in Mathematics and its Applications, 27. North-Holland Publishing Co., Amsterdam, 1997. · Zbl 0888.73001
[7] G. Dal Maso; A. DeSimone; M. G. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Arch. Ration. Mech. Anal., 180, 237-291 (2006) · Zbl 1093.74007 · doi:10.1007/s00205-005-0407-0
[8] E. Davoli; M. G. Mora, A quasistatic evolution model for perfectly plastic plates derived by \(\Gamma \)-convergence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30, 615-660 (2013) · Zbl 1366.74039 · doi:10.1016/j.anihpc.2012.11.001
[9] E. Davoli; M. G. Mora, Stress regularity for a new quasistatic evolution model of perfectly plastic plates, Calc. Var. Partial Differential Equations, 54, 2581-2614 (2015) · Zbl 1327.74038 · doi:10.1007/s00526-015-0876-4
[10] F. Demengel, Fonctions à hessien borné, Ann. Inst. Fourier (Grénoble), 34 (1984), 155-190. · Zbl 0525.46020
[11] A. Demyanov, Regularity of stresses in Prandtl-Reuss plasticity, Calc. Var. Partial Differential Equations, 34, 23-72 (2009) · Zbl 1149.74014 · doi:10.1007/s00526-008-0174-5
[12] A. Demyanov, Quasistatic evolution in the theory of perfectly elasto-plastic plates. Ⅰ. Existence of a weak solution, Math. Models Methods Appl. Sci., 19, 229-256 (2009) · Zbl 1160.74031 · doi:10.1142/S0218202509003413
[13] A. Demyanov, Quasistatic evolution in the theory of perfectly elasto-plastic plates. Ⅱ. Regularity of bending moments, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26, 2137-2163 (2009) · Zbl 1177.74235 · doi:10.1016/j.anihpc.2009.01.006
[14] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics Appl. Math., vol. 28, SIAM, Philadelphia, PA, 1999. · Zbl 0939.49002
[15] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Springer, 2011. · Zbl 1245.35002
[16] R. V. Kohn; R. Temam, Dual spaces of stresses and strains, with application to Hencky plasticity, Appl. Math. Optim., 10, 1-35 (1983) · Zbl 0532.73039 · doi:10.1007/BF01448377
[17] J.Lubliner, Plasticity Theory, Macmillan Publishing Company, New York, 1990. · Zbl 0745.73006
[18] A. Mainik; A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differential Equations, 22, 73-99 (2005) · Zbl 1161.74387 · doi:10.1007/s00526-004-0267-8
[19] G. B. Maggiani; M. G. Mora, A dynamic evolution model for perfectly plastic plates, Math. Models Methods Appl. Sci., 26, 1825-1864 (2016) · Zbl 1346.74015 · doi:10.1142/S0218202516500469
[20] A. Mielke and T. Roubíček, Rate-independent Systems. Theory and Application, Springer, New York, 2015. · Zbl 1339.35006
[21] R. T. Rockafellar, Convex Integral Functionals and Duality, in Contributions to Nonlinear Functional Analysis, Academic Press, (1971), 215-236. · Zbl 0295.49006
[22] P. M. Suquet, Sur le équations de la plasticité: existence et regularité des solutions, J. Mécanique, 20 (1981), 3-39. · Zbl 0474.73030
[23] R. Temam, Mathematical Problems in Plasticity, Gauthier-Villars, Paris, 1985. · Zbl 0457.73017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.