×

An analysis of the TDNNS method using natural norms. (English) Zbl 1412.65224

The authors are interested in the approximation of the linear elasticity problem with the tangential-displacement normal-normal-stress finite element method. In this case, the tangential component of the displacement vector and the normal-normal component of the stress are sought in a re-formulation of the linear elasticity problem. Although it is well known that this method is convergent with the optimal order and robust with respect to shear and volume locking, still an analysis with respect to the natural norms of the arising spaces was missing. Here, the mathematical theory for the continuous problem is presented using the space \(\mathbf{H}(\mathbf{curl})\) for the displacement and the space \(\underline{\mathbf H}(\operatorname{div} \mathbf{div})\) for the stresses. The trace operators for the normal-normal stress are provided. The finite element problem is shown to be stable with respect to the \(\mathbf{H}(\mathbf{curl})\) norm and a discrete \(\mathbf{H}(\operatorname{div} \mathbf{div})\) norm. An a priori error estimate of optimal order with respect to these norms is shown.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74S05 Finite element methods applied to problems in solid mechanics
74G15 Numerical approximation of solutions of equilibrium problems in solid mechanics
74B10 Linear elasticity with initial stresses
35B45 A priori estimates in context of PDEs

References:

[1] Adams, S., Cockburn, B.: A mixed finite element method for elasticity in three dimensions. J. Sci. Comput. 25(3), 515-521 (2005) · Zbl 1125.74382 · doi:10.1007/s10915-004-4807-3
[2] Arnold, D.N., Awanou, G., Winther, R.: Finite elements for symmetric tensors in three dimensions. Math. Comput. 77(263), 1229-1251 (2008) · Zbl 1285.74013 · doi:10.1090/S0025-5718-08-02071-1
[3] Arnold, D.N., Winther, R.: Mixed finite elements for elasticity. Numer. Math. 92(3), 401-419 (2002) · Zbl 1090.74051 · doi:10.1007/s002110100348
[4] Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44. Springer, Heidelberg (2013) · Zbl 1277.65092
[5] Buffa, A., Ciarlet Jr., P.: On traces for functional spaces related to Maxwell’s equations. I. An integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci. 24(1), 9-30 (2001) · Zbl 0998.46012 · doi:10.1002/1099-1476(20010110)24:1<9::AID-MMA191>3.0.CO;2-2
[6] Buffa, A., Ciarlet Jr., P.: On traces for functional spaces related to Maxwell’s equations. II. Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Methods Appl. Sci. 24(1), 31-48 (2001) · Zbl 0976.46023 · doi:10.1002/1099-1476(20010110)24:1<31::AID-MMA193>3.0.CO;2-X
[7] Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986) · Zbl 0585.65077 · doi:10.1007/978-3-642-61623-5
[8] Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, vol. 24. Pitman (Advanced Publishing Program), Boston (1985) · Zbl 0695.35060
[9] Hellan, K.: Analysis of elastic plates in flexure by a simplified finite element method. Acta Polytechnica Scandinavica: Civ. Eng. Build. Constr. Ser. 46, 1 (1967) · Zbl 0237.73046
[10] Herrmann, L.R.: Finite-element bending analysis for plates. J. Eng. Mech. Div. 93(5), 13-26 (1967)
[11] Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237-339 (2002) · Zbl 1123.78320 · doi:10.1017/S0962492902000041
[12] Hiptmair, R., Zheng, W.: Local multigrid in H(curl). J. Comput. Math. 27(5), 573-603 (2009) · Zbl 1212.65486 · doi:10.4208/jcm.2009.27.5.012
[13] Johnson, C.: On the convergence of a mixed finite-element method for plate bending problems. Numer. Math. 21, 43-62 (1973) · Zbl 0264.65070 · doi:10.1007/BF01436186
[14] Kolev, T.V., Vassilevski, P.S.: Parallel auxiliary space AMG for \[H({\rm curl})H\](curl) problems. J. Comput. Math. 27(5), 604-623 (2009) · Zbl 1212.65128 · doi:10.4208/jcm.2009.27.5.013
[15] Monk, P.: Finite element methods for Maxwell’s equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003) · Zbl 1024.78009 · doi:10.1093/acprof:oso/9780198508885.001.0001
[16] Nédélec, J.C.: Mixed finite elements in \[{\mathbb{R}}^3\] R3. Numerische Mathematik 35, 315-341 (1980) · Zbl 0419.65069 · doi:10.1007/BF01396415
[17] Nédélec, J.C.: A new family of mixed finite elements in \[{\mathbb{R}}^3\] R3. Numerische Mathematik 50, 57-81 (1986) · Zbl 0625.65107 · doi:10.1007/BF01389668
[18] Pasciak, J.E., Zhao, J.: Overlapping Schwarz methods in \[HH\](curl) on polyhedral domains. J. Numer. Math. 10(3), 221-234 (2002) · Zbl 1017.65099 · doi:10.1515/JNMA.2002.221
[19] Pechstein, A., Schöberl, J.: Tangential-displacement and normal-normal-stress continuous mixed finite elements for elasticity. Math. Models Methods Appl. Sci. 21(8), 1761-1782 (2011) · Zbl 1237.74187 · doi:10.1142/S0218202511005568
[20] Pechstein, A., Schöberl, J.: Anisotropic mixed finite elements for elasticity. Internat. J. Numer. Methods Eng. 90(2), 196-217 (2012) · Zbl 1242.74148 · doi:10.1002/nme.3319
[21] Pechstein, A.S., Schöberl, J.: The TDNNS method for Reissner-Mindlin plates. Numerische Mathematik 137(3), 713-740 (2017). https://doi.org/10.1007/s00211-017-0883-9 · Zbl 1457.65211 · doi:10.1007/s00211-017-0883-9
[22] Sinwel, A.: A new family of mixed finite elements for elasticity. Ph.D. thesis, Johannes Kepler University Linz (2009). Published by Südwestdeutscher Verlag für Hochschulschriften (2009) · Zbl 1125.74382
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.