×

Symbolic algorithm of the functional-discrete method for a Sturm-Liouville problem with a polynomial potential. (English) Zbl 1412.65059

Summary: A new symbolic algorithmic implementation of the general scheme of the exponentially convergent functional-discrete method is developed and justified for the Sturm-Liouville problem on a finite interval for the Schrödinger equation with a polynomial potential and the boundary conditions of Dirichlet type. The algorithm of the general scheme of our method is developed when the potential function is approximated by the piecewise-constant function. Our algorithm is symbolic and operates with the decomposition coefficients of the eigenfunction corrections in some basis. The number of summands in these decompositions depends on the degree of the potential polynomial and on the correction number. Our method uses the algebraic operations only and does not need solutions of any boundary value problems and computations of any integrals unlike the previous version. A numerical example illustrates the theoretical results.

MSC:

65L15 Numerical solution of eigenvalue problems involving ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
65L70 Error bounds for numerical methods for ordinary differential equations
34B09 Boundary eigenvalue problems for ordinary differential equations
34B24 Sturm-Liouville theory
34L16 Numerical approximation of eigenvalues and of other parts of the spectrum of ordinary differential operators
34L20 Asymptotic distribution of eigenvalues, asymptotic theory of eigenfunctions for ordinary differential operators

Software:

NAG; nag

References:

[1] E. L. Allgower, Introduction to Numerical Continuation Methods, Colorado State University, Colorado, 1990.; Allgower, E. L., Introduction to Numerical Continuation Methods (1990) · Zbl 0717.65030
[2] M. A. Armstrong, Basic Topology, Undergrad. Texts Math., Springer, New York, 1983.; Armstrong, M. A., Basic Topology (1983) · Zbl 0514.55001
[3] F. V. Atkinson, Discrete and Continuous Boundary Problems, “Mir”, Moskau, 1968.; Atkinson, F. V., Discrete and Continuous Boundary Problems (1968) · Zbl 0169.10601
[4] B. J. Bandyrskij, V. L. Makarov and O. L. Ukhanev, FD-method for Sturm-Liouville problem. Exponential convergence rate, Numer. Appl. Math. 1 (2000), no. 85, 1-60.; Bandyrskij, B. J.; Makarov, V. L.; Ukhanev, O. L., FD-method for Sturm-Liouville problem. Exponential convergence rate, Numer. Appl. Math., 1, 85, 1-60 (2000) · Zbl 0977.65070
[5] N. Bogoliouboff and N. Kryloff, Sopra il metodo dei coefficienti costanti (metodo dei tronconi) per l’integrazione approssimata delle equazioni differenziali della fisica matematica, Boll. Unione Mat. Ital. 7 (1928), 72-76.; Bogoliouboff, N.; Kryloff, N., Sopra il metodo dei coefficienti costanti (metodo dei tronconi) per l’integrazione approssimata delle equazioni differenziali della fisica matematica, Boll. Unione Mat. Ital., 7, 72-76 (1928) · JFM 54.0479.02
[6] J. Dähnn, Anwendung eines direkten Verfahrens zur numerischen Behandlung von selbstadjungierten, positiv definiten Eigenwertaufgaben bei linearen gewöhnlichen Differentialgleichungen mit stückweise stetigen Koeffizientenfunktionen, Z. Angew. Math. Mech. 62 (1982), no. 12, 687-695.; Dähnn, J., Anwendung eines direkten Verfahrens zur numerischen Behandlung von selbstadjungierten, positiv definiten Eigenwertaufgaben bei linearen gewöhnlichen Differentialgleichungen mit stückweise stetigen Koeffizientenfunktionen, Z. Angew. Math. Mech., 62, 12, 687-695 (1982) · Zbl 0573.65067
[7] I. Demkiv, I. P. Gavrilyuk and V. L. Makarov, Super-exponentially convergent parallel algorithm for eigenvalue problems with fractional derivatives, Comput. Methods Appl. Math. 16 (2016), no. 4, 633-652.; Demkiv, I.; Gavrilyuk, I. P.; Makarov, V. L., Super-exponentially convergent parallel algorithm for eigenvalue problems with fractional derivatives, Comput. Methods Appl. Math., 16, 4, 633-652 (2016) · Zbl 1352.65201
[8] M. K. El-Daou, Exponentially weighted Legendre-Gauss tau methods for linear second-order differential equations, Comput. Math. Appl. 62 (2011), no. 1, 51-64.; El-Daou, M. K., Exponentially weighted Legendre-Gauss tau methods for linear second-order differential equations, Comput. Math. Appl., 62, 1, 51-64 (2011) · Zbl 1228.65108
[9] M. K. El-Daou and N. R. Al-Matar, An improved Tau method for a class of Sturm-Liouville problems, Appl. Math. Comput. 216 (2010), no. 7, 1923-1937.; El-Daou, M. K.; Al-Matar, N. R., An improved Tau method for a class of Sturm-Liouville problems, Appl. Math. Comput., 216, 7, 1923-1937 (2010) · Zbl 1220.65104
[10] F. R. Gantmacher, The Theory of Matrices. Vol. 1 and 2, Chelsea Publishing, New York, 1959.; Gantmacher, F. R., The Theory of Matrices. Vol. 1 and 2 (1959) · Zbl 0085.01001
[11] I. Gavrilyuk, V. Makarov and N. Romaniuk, Super-exponentially convergent parallel algorithm for a fractional eigenvalue problem of Jacobi-type, Comput. Methods Appl. Math. (2017), 10.1515/cmam-2017-0010.; Gavrilyuk, I.; Makarov, V.; Romaniuk, N., Super-exponentially convergent parallel algorithm for a fractional eigenvalue problem of Jacobi-type, Comput. Methods Appl. Math. (2017) · Zbl 1382.65216 · doi:10.1515/cmam-2017-0010
[12] R. Gordon, New method for constructing wave functions for bound states and scattering, J. Chem. Phys. 51 (1969), no. 14, 14-25.; Gordon, R., New method for constructing wave functions for bound states and scattering, J. Chem. Phys., 51, 14, 14-25 (1969)
[13] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 8th ed., Elsevier/Academic Press, Amsterdam, 2015.; Gradshteyn, I. S.; Ryzhik, I. M., Table of Integrals, Series, and Products (2015) · Zbl 1300.65001
[14] J.-H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Engrg. 178 (1999), no. 3-4, 257-262.; He, J.-H., Homotopy perturbation technique, Comput. Methods Appl. Mech. Engrg., 178, 3-4, 257-262 (1999) · Zbl 0956.70017
[15] S. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. thesis, Shanghai Jiao Tong University, 1992.; Liao, S., The proposed homotopy analysis technique for the solution of nonlinear problems (1992)
[16] V. Makarov, About functional-discrete method of an arbitrary order of accuracy for a Sturm-Liouville problem with piecewise smooth coefficients, Dokl. Akad. Nauk SSSR 320 (1991), no. 1, 34-39.; Makarov, V., About functional-discrete method of an arbitrary order of accuracy for a Sturm-Liouville problem with piecewise smooth coefficients, Dokl. Akad. Nauk SSSR, 320, 1, 34-39 (1991)
[17] V. L. Makarov, FD-method - an exponential convergence rate, Comput. Appl. Math. 82 (1997), 69-74.; Makarov, V. L., FD-method - an exponential convergence rate, Comput. Appl. Math., 82, 69-74 (1997) · Zbl 0985.65054
[18] V. L. Makarov and N. M. Romanyuk, New properties of the FD-method in its applications to the Sturm-Liouville problems, Dopov. Nats. Akad. Nauk Ukr. (2014), no. 2, 26-31.; Makarov, V. L.; Romanyuk, N. M., New properties of the FD-method in its applications to the Sturm-Liouville problems, Dopov. Nats. Akad. Nauk Ukr., 2, 26-31 (2014) · Zbl 1313.65198
[19] V. L. Makarov and V. V. Vinokur, The FD method for first-order linear hyperbolic differential equations with piecewise smooth coefficients, J. Math. Sci. 77 (1995), no. 5, 3399-3405.; Makarov, V. L.; Vinokur, V. V., The FD method for first-order linear hyperbolic differential equations with piecewise smooth coefficients, J. Math. Sci., 77, 5, 3399-3405 (1995) · Zbl 0839.65099
[20] S. Pruess, Estimating the eigenvalues of Sturm-Liouville problems by approximating the differential equation, SIAM J. Numer. Anal. 10 (1973), 55-68.; Pruess, S., Estimating the eigenvalues of Sturm-Liouville problems by approximating the differential equation, SIAM J. Numer. Anal., 10, 55-68 (1973) · Zbl 0259.65078
[21] J. D. Pryce, Numerical Solution of Sturm-Liouville Problems, Clarendon Press, Oxford, 1993.; Pryce, J. D., Numerical Solution of Sturm-Liouville Problems (1993) · Zbl 0795.65053
[22] R. Rach, A bibliography of the theory and applications of the Adomian decomposition method, 1961-2011, Kybernetes 41 (2012), 10.1108/k.2012.06741gaa.007.; Rach, R., A bibliography of the theory and applications of the Adomian decomposition method, 1961-2011, Kybernetes, 41 (2012) · Zbl 1511.65112 · doi:10.1108/k.2012.06741gaa.007
[23] A. A. Samarskiĭ, Mathematical modelling and numerical experiment, Vestnik Akad. Nauk SSSR (1979), no. 5, 38-49.; Samarskiĭ, A. A., Mathematical modelling and numerical experiment, Vestnik Akad. Nauk SSSR, 5, 38-49 (1979)
[24] Z. Zhang, How many numerical eigenvalues can we trust?, J. Sci. Comput. 65 (2015), no. 2, 455-466.; Zhang, Z., How many numerical eigenvalues can we trust?, J. Sci. Comput., 65, 2, 455-466 (2015) · Zbl 1329.65265
[25] Association for Computing Machinery, Collected algorithms (CALGO), 2017, accessed 11.08.17, .; <element-citation publication-type=”other“> Association for Computing Machinery, Collected algorithms (CALGO), 2017, accessed 11.08.17, <ext-link ext-link-type=”uri“ xlink.href=”>http://www.netlib.org/toms/Website
[26] Computer Physics Communications (CPC) Program Library, Queen’s University Belfast, Programs in physics and physical chemistry, 2017, accessed 11.08.17, .; <element-citation publication-type=”other“> Computer Physics Communications (CPC) Program Library, Queen’s University Belfast, Programs in physics and physical chemistry, 2017, accessed 11.08.17, <ext-link ext-link-type=”uri“ xlink.href=”>http://www.cpc.cs.qub.ac.uk/cpchome.htmlWebsite
[27] Department of Applied Mathematics, Computer science and Statistics, Ghent University, Netherlands, The numerical solutions of Sturm-Liouville and Schrödinger equations, 2017, accessed 11.08.17, .; <element-citation publication-type=”other“> Department of Applied Mathematics, Computer science and Statistics, Ghent University, Netherlands, The numerical solutions of Sturm-Liouville and Schrödinger equations, 2017, accessed 11.08.17, <ext-link ext-link-type=”uri“ xlink.href=”>http://www.ugent.be/we/twist/en/research/numerical-mathematics/Website
[28] Laboratory of Information Technologies, Joint Institute for Nuclear Research (JINR), Program Library JINRLIB, Dubna, Moscow Region, Russia, 2017, accessed 11.08.17, .; <element-citation publication-type=”other“> Laboratory of Information Technologies, Joint Institute for Nuclear Research (JINR), Program Library JINRLIB, Dubna, Moscow Region, Russia, 2017, accessed 11.08.17, <ext-link ext-link-type=”uri“ xlink.href=”>http://wwwinfo.jinr.ru/programs/jinrlib/Website
[29] The Numerical Algorithms Group Ltd, Oxford UK, The numerical algorithms group (NAG) fortran library manual, Mark 20, 2002, accessed 11.08.17, .; <element-citation publication-type=”other“> The Numerical Algorithms Group Ltd, Oxford UK, The numerical algorithms group (NAG) fortran library manual, Mark 20, 2002, accessed 11.08.17, <ext-link ext-link-type=”uri“ xlink.href=”>http://www.nag.co.uk/numeric/fl/manual20/html/mark20.htmlWebsite
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.