×

Singular solutions of elliptic equations on a perturbed cone. (English) Zbl 1412.35141

Authors’ abstract: In this work we obtain positive singular solutions of \[ \begin{cases} -\Delta u=u^p & \text{ in }\Omega_t,\\ u=0 & \text{ on }\partial\Omega_t, \end{cases} \] where \(\Omega_t\) is a sufficiently small \(C^{2,\alpha}\) perturbation of the cone \(\Omega:=\{x\in\mathbb{R}^N:\ x=r\theta,\ r>0,\ \theta\in S\}\) where \(S\in \mathbb{S}^{N-1}\) has a smooth nonempty boundary and where \(p>1\) satisfies suitable conditions. By singular solution we mean the solution is singular at the ‘vertex of the perturbed cone’. We also consider some other perturbations of the equation on the unperturbed cone \(\Omega\) and here we use a different class of function spaces.

MSC:

35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35B09 Positive solutions to PDEs
Full Text: DOI

References:

[1] Bandle, C.; Essen, M., On the positive solutions of Emden equations in cone-like domains, Arch. Ration. Mech. Anal., 112, 319-338 (1990) · Zbl 0727.35051
[2] Bandle, C.; Levine, H. A., On the existence and nonexistence of global solutions of reaction diffusion equations in sectorial domains, Trans. Amer. Math. Soc., 314, 595-622 (1989) · Zbl 0693.35081
[3] Bidaut-Véron, Marie-Françoise; Jazar, Mustapha; Véron, Laurent, Separable solutions of some quasilinear equations with source reaction, J. Differential Equations, 244, 274-308 (2008) · Zbl 1136.35041
[4] Bougherara, B.; Giacomoni, J.; Prashanth, S., Analytic global bifurcation and infinite turning points for very singular problems, Calc. Var. Partial Differential Equations, 52, 3-4, 829-856 (March 2015) · Zbl 1312.35097
[5] Buffoni, B.; Toland, J., Analytic Theory of Global Bifurcation. An Introduction, Princeton Series in Applied Mathematics (2003), Princeton University Press: Princeton University Press Princeton · Zbl 1021.47044
[6] Caffarelli, L.; Gidas, B.; Spruck, J., Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42, 271-297 (1989) · Zbl 0702.35085
[7] Chen, W.; Li, C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63, 615-622 (1991) · Zbl 0768.35025
[8] Clapp, M.; Grossi, M.; Pistoia, A., Multiple solutions to the Bahri-Coron problem in domains with a shrinking hole of positive dimension, Complex Var. Elliptic Equ., 57, 1147-1162 (2009) · Zbl 1260.35061
[9] Coron, J. M., Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris Sér. I, 299, 209-212 (1984) · Zbl 0569.35032
[10] Crandall, M.; Rabinowitz, H., Bifurcation, perturbation of simple eigenvalues, and linearized stability, J. Funct. Anal., 8, 2, 321-340 (October 1971) · Zbl 0219.46015
[11] Damascelli, L.; Grossi, M.; Pacella, F., Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16, 5, 631-652 (September-October 1999) · Zbl 0935.35049
[12] Dancer, E. N., Real analyticity and non degeneracy, Math. Ann., 325, 2, 369-392 (2003) · Zbl 1040.35033
[13] Dávila, J.; del Pino, M.; Musso, M., The supercritical Lane-Emden-Fowler equation in exterior domains, Comm. Partial Differential Equations, 32, 8, 1225-1243 (2007) · Zbl 1137.35023
[14] Dávila, J.; del Pino, M.; Musso, M.; Wei, J., Fast and slow decay solutions for supercritical elliptic problems in exterior domains, Calc. Var. Partial Differential Equations, 32, 4, 453-480 (August 2008) · Zbl 1147.35030
[15] Dávila, J.; del Pino, Manuel; Musso, M.; Wei, J., Standing waves for supercritical nonlinear Schrödinger equations, J. Differential Equations, 236, 1, 164-198 (2007) · Zbl 1124.35082
[16] Dávila, J.; Dupaigne, L., Perturbing singular solutions of the Gelfand problem, Commun. Contemp. Math., 9, 5, 639-680 (2007) · Zbl 1154.35047
[17] del Pino, M., Supercritical elliptic problems from a perturbation viewpoint, Discrete Contin. Dyn. Syst., 21, 1, 69 (2008) · Zbl 1141.35366
[18] del Pino, M.; Felmer, P.; Musso, Monica, Two-bubble solutions in the super-critical Bahri-Coronś problem, Calc. Var. Partial Differential Equations, 16, 2, 113-145 (2003), PDF · Zbl 1142.35421
[19] del Pino, M.; Felmer, P.; Musso, M., Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries, Bull. Lond. Math. Soc., 35, 4, 513-521 (2003) · Zbl 1109.35334
[20] del Pino, M.; Musso, M., Super-critical bubbling in elliptic boundary value problems, (Variational Problems and Related Topics, 1307. Variational Problems and Related Topics, 1307, Kyoto, 2002 (2003)), 85-108
[21] del Pino, M.; Musso, M.; Pacard, F., Boundary singularities for weak solutions of semilinear elliptic problems, J. Funct. Anal., 253, 1, 241-272 (2007) · Zbl 1137.35038
[22] Evans, L. C., Partial Differential Equations (2010), American Mathematical Soc. · Zbl 1194.35001
[23] Farina, A., On the classification of solutions of the Lane-Emden equation on unbounded domains of \(R^N\), J. Math. Pures Appl. (9), 87, 5, 537-561 (2007) · Zbl 1143.35041
[24] Gidas, B.; Ni, W.; Nirenberg, L., Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68, 525-598 (1979), MR0544879 (80h:35043) · Zbl 0425.35020
[25] Gidas, B.; Spruck, J., Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34, 4, 525-598 (1981) · Zbl 0465.35003
[26] Gkikas, K. T., Boundary singularities on a wedge-like domain of a semilinear elliptic equation, Proc. Roy. Soc. Edinburgh Sect. A, 145, 5, 979-1006 (2015) · Zbl 1341.35062
[27] Gladiali, F.; Grossi, M., Supercritical elliptic problem with nonautonomous nonlinearities, J. Differential Equations, 253, 2616-2645 (2012) · Zbl 1266.35105
[28] Grossi, M.; Takahashi, F., Nonexistence of multi-bubble solutions to some elliptic equations on convex domains, J. Funct. Anal., 259, 904-917 (2010) · Zbl 1195.35147
[29] Gui, C.; Ni, W. M.; Wang, X., On the stability and instability of positive steady states of a semilinear heat equation in \(R^n\), Comm. Pure Appl. Math., 45, 1153-1181 (1992) · Zbl 0811.35048
[30] Horák, J.; McKenna, P. J.; Reichel, W., Very weak solutions with boundary singularities for semilinear elliptic Dirichlet problems in domains with conical corners, J. Math. Anal. Appl., 352, 496-514 (2009) · Zbl 1168.35013
[31] Lindqvist, P., Notes on the \(p\)-Laplace Equation (2006), University of Jyväskylä, Report 102 · Zbl 1256.35017
[32] Mazzeo, R.; Pacard, F., A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis, J. Differential Geom., 44, 331-370 (1996) · Zbl 0869.35040
[33] McKenna, P. J.; Reichel, W., A priori bounds for semilinear equations and a new class of critical exponents for Lipschitz domains, J. Funct. Anal., 244, 1, 220-246 (2007) · Zbl 1231.35029
[34] Pacard, F.; Rivière, T., Linear and Nonlinear Aspects of Vortices: The Ginzburg Landau Model, Progress in Nonlinear Differential Equations, vol. 39 (2000), Birkauser, 342 pp. · Zbl 0948.35003
[35] Passaseo, D., Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains, J. Funct. Anal., 114, 1, 97-105 (1993) · Zbl 0793.35039
[36] Pohozaev, S., Eigenfunctions of the equation \(\Delta u + \lambda f(u) = 0\), Sov. Math., Dokl., 6, 1408-1411 (1965) · Zbl 0141.30202
[37] Porretta, Alessio; Véron, Laurent, Separable solutions of quasilinear Lane-Emden equations, J. Eur. Math. Soc., 15, 755-774 (2013) · Zbl 1272.35105
[38] Shioji, N.; Watanabe, K., Uniqueness and nondegeneracy of positive radial solutions of \(div(\rho \nabla u) + \rho(- g u + h u^p) = 0\), Calc. Var., 55, 32 (2016) · Zbl 1342.35086
[39] Struwe, M., Variational Methods - Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems (1990), Springer-Verlag: Springer-Verlag Berlin · Zbl 0746.49010
[40] Wang, X., On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337, 2, 549-590 (June 1993) · Zbl 0815.35048
[41] Wang, K.; Wei, J., Analysis of blow-up locus and existence of weak solutions for nonlinear supercritical problems, Int. Math. Res. Not., 2015, 10, 2634-2670 (January 2015) · Zbl 1325.35059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.