×

On nonlinear implicit fractional differential equations without compactness. (English) Zbl 1412.34018

Summary: The main purpose of this research paper is to develop some sufficient conditions for the existence of solution of a nonlinear problem of implicit fractional differential equations (IFDEs) with boundary conditions, using prior estimate method. The distinction of the method applied here is, it does not require compactness of the operator. This idea is the result of motivation from the book of D. O’Regan et al. [Topological degree theory and applications. Boca Raton, FL: Chapman & Hall/CRC (2006; Zbl 1095.47001)]. Devising the respective conditions, we also developed some conditions for Hyers-Ulam type stability to the solution of the said problem. To justify the relevant results a suitable example is provided.

MSC:

34A08 Fractional ordinary differential equations
34Kxx Functional-differential equations (including equations with delayed, advanced or state-dependent argument)

Citations:

Zbl 1095.47001
Full Text: DOI

References:

[1] Abbas, S.; Benchohra, M.; N’Guérékata, G. M., Topics in fractional differential equations, Springer, New York (2012) · Zbl 1273.35001
[2] Agarwal, R. P.; Baleanu, D.; Rezapour, S.; S. Salehi, The existence of solutions for some fractional finite difference equations via sum boundary conditions, Adv. Difference Equ., 2014, 1-16 (2014) · Zbl 1417.34008 · doi:10.1186/1687-1847-2014-282
[3] Agarwal, R. P.; Benchohra, M.; S. Hamani, Boundary value problems for fractional differential equations, Georgian Math. J., 16, 401-411 (2009) · Zbl 1179.26011 · doi:10.1515/GMJ.2009.401
[4] Agarwal, R. P.; O’Regan, D.; Cho, Y. J.; Chen, Y.-Q., Topological Degree Theory and its Applications, Taylor and Francis Group, New York (2006) · Zbl 1095.47001
[5] Z. Bai, On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Anal., 72, 916-924 (2010) · Zbl 1187.34026 · doi:10.1016/j.na.2009.07.033
[6] Baleanu, D.; Agarwal, R. P.; Khan, H.; Khan, R. A.; H. Jafari, On the existence of solution for fractional differential equations of order \(3 < \delta\leq 4\), Adv. Difference Equ., 2015, 1-9 (2015) · Zbl 1422.34020 · doi:10.1186/s13662-015-0686-1
[7] Baleanu, D.; Agarwal, R. P.; Mohammad, H.; Rezapour, S., Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces, Bound. Value Probl., 2013, 1-8 (2013) · Zbl 1301.34007 · doi:10.1186/1687-2770-2013-112
[8] Benchohra, M.; Graef, J. R.; Hamani, S., Existence results for boundary value problems with non-linear fractional differential equations, Appl. Anal., 87, 851-863 (2008) · Zbl 1198.26008 · doi:10.1080/00036810802307579
[9] Benchohra, M.; Hamani, S.; Ntouyas, S. K., Boundary value problems for differential equations with fractional order, Surv. Math. Appl., 3, 1-12 (2008) · Zbl 1157.26301
[10] Benchohra, M.; Lazreg, J. E., Existence results for nonlinear implicit fractional differential equations, Surv. Math. Appl., 9, 79-92 (2014) · Zbl 1399.34008
[11] Diethelm, K.; Ford, N. J., Analysis of Fractional Differential Equations, J. Math. Anal. Appl., 265, 229-248 (2002) · Zbl 1014.34003 · doi:10.1006/jmaa.2000.7194
[12] Goodrich, C. S., Existence of a positive solution to a class of fractional differential equations, Appl. Math. Lett., 23, 1050-1055 (2010) · Zbl 1204.34007 · doi:10.1016/j.aml.2010.04.035
[13] D. H. Hyers, On the stability of the linear functional equations, Proc. Nat. Acad. Sci., 27, 222-224 (1941) · Zbl 0061.26403 · doi:10.1073/pnas.27.4.222
[14] Isaia, F., On a nonlinear integral equation without compactness, Acta Math. Univ. Comenian., 75, 233-240 (2006) · Zbl 1164.45305
[15] S.-M. Jung, Hyers-Ulam Stability of linear differential equations of first order, Appl. Math. Lett., 17, 1135-1140 (2004) · Zbl 1061.34039 · doi:10.1016/j.aml.2003.11.004
[16] Khan, R. A.; Rehman, M.; J. Henderson, Existence and uniqueness of solutions for nonlinear fractional differential equations with integral boundary conditions, Fract. Differ. Calc., 1, 29-43 (2011) · Zbl 1412.34034
[17] Khan, R. A.; Shah, K., Existence and uniqueness of solutions to fractional order multi-point boundary value problems, Commun. Appl. Anal., 19, 515-526 (2015)
[18] Kilbas, A. A.; Marichev, O. I.; Samko, S. G., Fractional Integrals and Derivatives, (Theory and Applications), Gordon and Breach, Switzerland (1993) · Zbl 0818.26003
[19] Lakshmikantham, V.; Leela, S.; J. V. Devi, Theory of Fractional Dynamic Systems, CSP, UK (2009) · Zbl 1188.37002
[20] Lv, L.; Wang, J.-R.; Wei, W., Existence and uniqueness results for fractional differential equations with boundary value conditions, Opuscula Math., 31, 629-643 (2011) · Zbl 1225.26010 · doi:10.7494/OpMath.2011.31.4.629
[21] Magin, R. L., Fractional calculus in bioengineering-part 2, Crit. Rev. Biomed. Eng., 32, 105-193 (2004)
[22] Mawhin, J., Topological Degree Methods in Nonlinear Boundary Value Problems, Am. Math. Soc., United States of America (1979) · Zbl 0414.34025
[23] Miller, K. S.; Ross, B., An Introduction to the fractional Calculus and fractional Differential Equations, Wiley, New York (1993) · Zbl 0789.26002
[24] Nyamoradi, N.; Baleanu, D.; R. P. Agarwal, Existence and uniqueness of positive solutions to fractional boundary value problems with nonlinear boundary conditions, Adv. Difference Equ., 2013, 1-11 (2013) · Zbl 1375.34097 · doi:10.1186/1687-1847-2013-266
[25] Nyamoradi, N.; Baleanu, D.; Agarwal, R. P., On a Multipoint Boundary Value Problem for a Fractional Order Differential Inclusion on an Infinite Interval, Adv. Math. Phys., 2013, 1-9 (2013) · Zbl 1272.34009 · doi:10.1155/2013/823961
[26] Podlubny, I., Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, , San Diego (1999) · Zbl 0918.34010
[27] Rassias, T. M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72, 297-300 (1978) · Zbl 0398.47040 · doi:10.1090/S0002-9939-1978-0507327-1
[28] Rassias, T. M., On the stability of functional equations and a problem of Ulam, Acta Appl. Math., 62, 23-130 (2000) · Zbl 0981.39014 · doi:10.1023/A:1006499223572
[29] W. Soedel, Vibrations of Shells and Plates, Dekker, New York (2004) · Zbl 1080.74002
[30] Stamova, I. M., Mittag-Leffler stability of impulsive differential equations of fractional order, Quart. Appl. Math., 73, 525-535 (2015) · Zbl 1330.34024 · doi:10.1090/qam/1394
[31] Timoshenko, S. P., Theory of Elastic Stability, McGraw-Hill Book Co., New York (1961)
[32] Trigeassou, J. C.; Maamri, N.; Sabatier, J.; Oustaloup, A., A Lyapunov approach to the stability of fractional differential equations, Signal Processing, 91, 437-445 (2011) · Zbl 1203.94059 · doi:10.1016/j.sigpro.2010.04.024
[33] Ulam, S. M., A Collection of the Mathematical Problems, Interscience Publishers, New York (1960) · Zbl 0086.24101
[34] Wang, J.-R.; X.-Z. Li, Ulam-Hyers stability of fractional Langevin equations, Appl. Math. Comput., 258, 72-83 (2015) · Zbl 1338.39047 · doi:10.1016/j.amc.2015.01.111
[35] Wang, J.-R.; Lv, L.; Zhou, Y., Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., 2011, 1-10 (2011) · Zbl 1340.34034 · doi:10.14232/ejqtde.2011.1.63
[36] Wang, J.-R.; Zhou, Y.; W. Wei, Study in fractional differential equations by means of topological degree methods, Numer. Func. Anal. Optim., 33, 216-238 (2012) · Zbl 1242.34012 · doi:10.1080/01630563.2011.631069
[37] Zhao, Y.; Sun, S.; Han, Z.; Q.-P. Li, The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 16, 2086-2097 (2011) · Zbl 1221.34068 · doi:10.1016/j.cnsns.2010.08.017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.