×

Security control for Markov jump system with adversarial attacks and unknown transition rates via adaptive sliding mode technique. (English) Zbl 1411.93164

Summary: This paper is concerned with the security control problem for a class of Markov jump systems subject to false data injection attack and incomplete transition rates. An on-line estimation strategy is provided for the time-variant and unknown cyber-attack modes. And then, an adaptive sliding mode controller is synthesized with different robust terms for different modes to guarantee the reachability of the specified sliding surface. Moreover, the sufficient conditions for the stability of the closed-loop systems are derived. Finally, it is shown from simulation results that the effect of both false data injection attack and incomplete TRs can be effectively attenuated by the present adaptive SMC method.

MSC:

93E03 Stochastic systems in control theory (general)
93C40 Adaptive control/observation systems
93B12 Variable structure systems
Full Text: DOI

References:

[1] Zonouz, S.; Rogers, K. M.; Berthier, R.; Bobba, R. B.; Sanders, W. H.; Overbye, T. J., SCPSE: security-oriented cyber-physical state estimation for power grid critical infrastructures, IEEE Trans. Smart Grid, 3, 1790-1799 (2012)
[2] Befekadu, G. K.; Gupta, V.; Antsaklis, P. J., Risk-sensitive control under Markov modulated Denial-of-Service (DoS) attack strategies, IEEE Trans. Autom. Control, 60, 3299-3304 (2015) · Zbl 1360.93766
[3] Dolk, V. S.; Tesi, P.; Persis, C. D.; Heemels, W. P.M. H., Event-triggered control systems under Denial-of-Service attacks, IEEE Trans. Control Netw. Syst., 4, 93-105 (2017) · Zbl 1370.93148
[4] Zhao, L.; Yang, G., Adaptive sliding mode fault tolerant control for nonlinearly chaotic systems against DoS attack and network faults, J. Frankl. Inst., 354, 6520-6535 (2017) · Zbl 1373.93084
[5] Lee, P.; Clark, A.; Bushnell, L.; Poovendran, R., A passivity framework for modeling and mitigating wormhole attacks on networked control systems, IEEE Trans. Autom. Control, 59, 3224-3237 (2013) · Zbl 1360.68436
[6] Hu, L.; Wang, Z.; Han, Q.; Liu, X., State estimation under false data injection attacks: Security analysis and system protection, Automatica, 87, 176-183 (2018) · Zbl 1378.93119
[7] Ding, D.; Wang, Z.; Han, Q.; Wei, G., Security control for discrete-time stochastic nonlinear systems subject to deception attacks, IEEE Trans. Syst. Man Cybern. Syst., 48, 779-789 (2018)
[8] Pasqualetti, F.; Dörfler, F.; Bullo, F., Attack detection and identification in cyber-physical systems, IEEE Trans. Autom. Control, 58, 2715 (2013) · Zbl 1369.93675
[9] Li, X.; Lam, J.; Gao, H.; Xiong, J., \(H_∞\) and \(H_2\) filtering for linear systems with uncertain Markov transitions, Automatica, 67, 252-266 (2016) · Zbl 1335.93126
[10] Song, J.; Niu, Y.; Zou, Y., Asynchronous output feedback control of time-varying Markovian jump systems within a finite-time interval, J. Frankl. Inst., 354, 6747-6765 (2017) · Zbl 1373.93314
[11] Zou, Y.; Lam, J.; Niu, Y.; Li, D., Constrained predictive control synthesis for quantized systems with Markovian data loss, Automatica, 55, 217-225 (2015) · Zbl 1377.93171
[12] M. Zhang, P. Shi, L. Ma, J. Cai, H. Su, Quantized feedback control of fuzzy Markov jump systems, IEEE Trans. Cybern., doi:10.1109/TCYB.2018.2842434; M. Zhang, P. Shi, L. Ma, J. Cai, H. Su, Quantized feedback control of fuzzy Markov jump systems, IEEE Trans. Cybern., doi:10.1109/TCYB.2018.2842434
[13] Zhang, M.; Shi, P.; Liu, Z.; Cai, J.; Su, H., Dissipativity-based asynchronous control of discrete-time Markov jump systems with mixed time delays, Int. J. Robust Nonlinear Control, 28, 2161-2171 (2018) · Zbl 1390.93854
[14] Kalyanasundaram, S.; Chong, E. K.P.; Shroff, N. B., Markov decision processes with uncertain transition rates: sensitivity and robust control, Decision and Control, Proceedings of the IEEE Conference on, 4, 3799-3804 (2002)
[15] Zhang, L.; Boukas, E.-K.; Lam, J., Analysis and synthesis of Markov jump linear systems with time-varying delays and partially known transition probabilities, IEEE Trans. Autom. Control, 53, 2458-2464 (2008) · Zbl 1367.93710
[16] Guo, Y.; Wang, Z., Stability of Markovian jump systems with generally uncertain transition rates, J. Frankl. Inst., 350, 2826-2836 (2013) · Zbl 1287.93106
[17] Niu, Y.; Ho, D. W.C.; Wang, X., Sliding mode control for Ito stochastic jump systems with Markovian switching, Automatica, 43, 1784-1790 (2007) · Zbl 1119.93063
[18] Chen, B.; Niu, Y.; Zou, Y., Adaptive sliding mode control for stochastic Markovian jumping systems with actuator degradation, Automatica, 49, 1748-1754 (2013) · Zbl 1360.93150
[19] Kao, Y.; Xie, J.; Zhang, L.; Karimi, H. R., A sliding mode approach to robust stabilisation of Markovian jump linear time-delay systems with generally incomplete transition rates, Nonlinear Anal.: Hybrid Syst., 17, 70-80 (2015) · Zbl 1326.93111
[20] Amin, S.; Sastry, S. S., Safe and Secure Networked Control Systems under Denial-of-Service Attacks, International Conference on Hybrid Systems: Computation & Control (2009) · Zbl 1237.90054
[21] Lin, Y. K.; Cai, G. Q., Probabilistic Structural Dynamics Advanced Theory and Applications (1995), McGraw-Hill, Inc.
[22] Yuan, C.; Mao, X., Robust stability and controllability of stochastic differential delay equations with Markovian switching, Automatica, 40, 343-354 (2004) · Zbl 1040.93069
[23] Xiong, J.; Lam, J., Robust \(H_2\) control of Markovian jump systems with uncertain switching probabilities, Int. J. Syst. Sci., 40, 255-265 (2009) · Zbl 1167.93335
[24] Cao, Z.; Niu, Y., Finite-time sliding mode control of Markovian jump systems subject to actuator nonlinearities and its application to wheeled mobile manipulator, J. Frankl. Inst., 355, 7865-7894 (2018) · Zbl 1398.93056
[25] Pomet, J. B.; Praly, L., Adaptive nonlinear regulation: estimation from the Lyapunov equation, IEEE Trans. Autom. Control, 37, 729-740 (1992) · Zbl 0755.93071
[26] Niu, Y.; Ho, D. W.C.; Lam, J., Robust integral sliding mode control for uncertain stochastic systems with time-varying delay, Automatica, 41, 873-880 (2005) · Zbl 1093.93027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.