×

Attraction to equilibria in stage-structured predator prey models and bio-control problems. (English) Zbl 1411.92256

Summary: Controlling invasive species has become an important ecological issue over the last decades. A popular management strategy consists of releasing natural enemies, generally predators. From a mathematical point of view, the study of any realistic problem in bio-control normally involves models remarkably resistant to the analysis. In this paper, we propose a new iterative method for studying the dynamical behaviour of a predator-prey model in which an invasive plant is subject to predation of an insect population. We show that the dynamics of the model depends on a suitable scalar function that determines the existence of equilibria.

MSC:

92D25 Population dynamics (general)
92D40 Ecology
Full Text: DOI

References:

[1] Lewis, M.A., Petrovskii, S.V., Potts, J.R.: The Mathematics Behind Biological Invasions, vol. 44. Springer, Switzerland (2016) · Zbl 1338.92001
[2] Parshad, R.D., Quansah, E., Black, K., Beauregard, M.: Biological control via ecological damping: an approach that attenuates non-target effects. Math. Biosci. 273, 23-44 (2016) · Zbl 1364.92061 · doi:10.1016/j.mbs.2015.12.010
[3] Smith, J.M.D., Ward, J.P., Child, L.E., Owen, M.R.: A simulation model of rhizome networks for Fallopia Japonica (Japanese knotweed) in the United Kingdom. Ecol. Model. 200, 421-432 (2007) · doi:10.1016/j.ecolmodel.2006.08.004
[4] Gourley, S.A., Li, J., Zou, X.: A mathematical model for biocontrol of the invasive weed Fallopia japonica. Bull. Math. Biol. 78, 1678-1702 (2016) · Zbl 1352.92124 · doi:10.1007/s11538-016-0195-8
[5] Williams, F.E., et al.: The economic cost of invasive non-native species on great britain. CABI (2010)
[6] Gourley, S.A., Liu, R., Wu, J.: Slowing the evolution of insecticide resistance in mosquitoes: a mathematical model. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 467, 2127-2148 (2011) · Zbl 1228.35257 · doi:10.1098/rspa.2010.0413
[7] Liu, R., Gourley, S.A.: A model for the biocontrol of mosquitoes using predator fish. Discrete Contin. Dyn. Syst. Ser. B 19, 3283-3298 (2014) · Zbl 1308.34109 · doi:10.3934/dcdsb.2014.19.3283
[8] Gourley, S.A., Lou, Y.: A mathematical model for the spatial spread and biocontrol of the Asian longhorned beetle. SIAM J. Appl. Math. 74, 864-884 (2014) · Zbl 1304.34137 · doi:10.1137/130939304
[9] Gourley, S.A., Zou, X.: A mathematical model for the control and eradication of a wood boring beetle infestation. SIAM Rev. 53, 321-345 (2011) · Zbl 1254.34116 · doi:10.1137/100818510
[10] Shaw, R.H., Bryner, S., Tanner, R.: The life history and host range of the Japanese knotweed psyllid, Aphalara itadori Shinji: potentially the first classical biological weed control agent for the European Union. Biol. Control 49, 105-113 (2009) · doi:10.1016/j.biocontrol.2009.01.016
[11] Liz, E., Ruiz-Herrera, A.: Attractivity, multistability, and bifurcation in delayed Hopfields model with non-monotonic feedback. J. Differ. Equ. 255, 4244-4266 (2013) · Zbl 1291.34121 · doi:10.1016/j.jde.2013.08.007
[12] Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, vol. 41. American Mathematical Society (2008)
[13] Enatsu, Y., Nakata, Y., Muroya, Y.: Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model. Nonlinear Anal. Real World Appl. 13, 2120-2133 (2012) · Zbl 1257.34065 · doi:10.1016/j.nonrwa.2012.01.007
[14] Liz, E., Ruiz-Herrera, A.: Global dynamics of delay equations for populations with competition among immature individuals. J. Differ. Equ. 260, 5926-5955 (2016) · Zbl 1337.34080 · doi:10.1016/j.jde.2015.12.020
[15] El-Morshedy, H.A., Ruiz-Herrera, A.: Geometric methods of global attraction in systems of delay differential equations. J. Differ. Equ. 263, 5968-5986 (2017) · Zbl 1412.34217 · doi:10.1016/j.jde.2017.07.001
[16] Beverton, R.J., Holt, S.J.: On the Dynamics of Exploited Fish Populations, vol. 11. Springer, Berlin (2012)
[17] El-Morshedy, H.A., Röst, G., Ruiz-Herrera, A.: Global dynamics of delay recruitment models with maximized lifespan. ZAMP 67, 1-15 (2016) · Zbl 1354.34124
[18] Singer, D.: Stable orbits and bifurcation of maps of the interval. SIAM J. Appl. Math. 35, 260-267 (1978) · Zbl 0391.58014 · doi:10.1137/0135020
[19] Faria, T.: Stability and bifurcation for a delayed predatorprey model and the effect of diffusion. J. Math. Anal. Appl. 254, 433-463 (2001) · Zbl 0973.35034 · doi:10.1006/jmaa.2000.7182
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.