×

Modelling optimal control of in-host HIV dynamics using different control strategies. (English) Zbl 1411.92177

Summary: HIV is one of the major causes of deaths, especially in Sub-Saharan Africa. In this paper, an in vivo deterministic model of differential equations is presented and analyzed for HIV dynamics. Optimal control theory is applied to investigate the key roles played by the various HIV treatment strategies. In particular, we establish the optimal strategies for controlling the infection using three treatment regimes as the system control variables. We have applied Pontryagin’s maximum principle in characterizing the optimality control, which then has been solved numerically by applying the Runge-Kutta forth-order scheme. The numerical results indicate that an optimal controlled treatment strategy would ensure significant reduction in viral load and also in HIV transmission. It is also evident from the results that protease inhibitor plays a key role in virus suppression; this is not to underscore the benefits accrued when all the three drug regimes are used in combination.

MSC:

92C60 Medical epidemiology
92C30 Physiology (general)
49N90 Applications of optimal control and differential games
Full Text: DOI

References:

[1] World Health Organization, World health statistics 2015, World Health Organization, 2015
[2] Mbogo, W. R.; Luboobi, L. S.; Odhiambo, J. W., Stochastic model for in-host HIV dynamics with therapeutic intervention, ISRN biomathematics, 2013 (2013) · Zbl 1269.92045 · doi:10.1155/2013/103708
[3] Ogunlaran, O. M.; Oukouomi Noutchie, S. C., Mathematical model for an effective management of HIV infection, BioMed Research International, 2016 (2016) · Zbl 1361.65048 · doi:10.1155/2016/4217548
[4] Nampala, H.; Luboobi, L. S.; Mugisha, J. Y.; Obua, C., Mathematical modeling of liver enzyme elevation in HIV mono-infection, Mathematical Biosciences, 242, 1, 77-85 (2013) · Zbl 1257.92029 · doi:10.1016/j.mbs.2012.12.005
[5] Pontryagin, L. S., Mathematical theory of optimal processes (1987), CRC Press
[6] Gaff, H.; Schaefer, E., Optimal control applied to vaccination and treatment strategies for various epidemiological models, Mathematical Biosciences and Engineering, 6, 3, 469-492 (2009) · Zbl 1169.49018 · doi:10.3934/mbe.2009.6.469
[7] Bakare, E. A.; Nwagwo, A.; Danso-Addo, E., Optimal control analysis of an SIR epidemic model with constant recruitment, International Journal of Applied Mathematical Research, 3, 3, 273-285 (2014) · doi:10.14419/ijamr.v3i3.2872
[8] Nowak, M. A.; Bonhoeffer, S.; Hill, A. M.; Boehme, R.; Thomas, H. C.; Mcdade, H., Viral dynamics in hepatitis B virus infection, Proceedings of the National Acadamy of Sciences of the United States of America, 93, 9, 4398-4402 (1996) · doi:10.1073/pnas.93.9.4398
[9] Srivastava, P. K.; Chandra, P., Modeling the dynamics of HIV and CD4+ T cells during primary infection, Nonlinear Analysis: Real World Applications, 11, 2, 612-618 (2010) · Zbl 1181.37122 · doi:10.1016/j.nonrwa.2008.10.037
[10] Alizon, S.; Magnus, C., Modelling the course of an HIV infection: Insights from ecology and evolution, Viruses, 4, 10, 1984-2013 (2012) · doi:10.3390/v4101984
[11] Wodarz, D.; Nowak, M. A., Immune Responses and Viral Phenotype: Do Replication Rate and Cytopathogenicity Influence Virus Load?, Journal of Theoretical Medicine, 2, 2, 113-127 (2000) · Zbl 0943.92024 · doi:10.1080/10273660008833041
[12] Arruda, E. F.; Dias, C. M.; de Magalhães, C. V.; Pastore, D. H.; Thomé, R. C.; Yang, H. M., An optimal control approach to HIV immunology, Applied Mathematics, 6, 6, 1115-1130 (2015) · doi:10.4236/am.2015.66102
[13] Wilen, C. B.; Tilton, J. C.; Doms, R. W., Molecular mechanisms of HIV entry, Advances in Experimental Medicine and Biology, 726, 223-242 (2012) · doi:10.1007/978-1-4614-0980-9_10
[14] Yusuf, T. T.; Benyah, F., Optimal strategy for controlling the spread of HIV/AIDS disease: a case study of South Africa, Journal of Biological Dynamics, 6, 2, 475-494 (2012) · Zbl 1447.92498 · doi:10.1080/17513758.2011.628700
[15] Srivastava, P. K.; Banerjee, M.; Chandra, P., Modeling the drug therapy for HIV infection, Journal of Biological Systems, 17, 2, 213-223 (2009) · Zbl 1342.92103 · doi:10.1142/S0218339009002764
[16] Hattaf, K.; Yousfi, N., Two optimal treatments of HIV infection model, World Journal of Modelling and Simulation, 8, 1, 27-36 (2012)
[17] Karrakchou, J.; Rachik, M.; Gourari, S., Optimal control and infectiology: Application to an HIV/AIDS model, Applied Mathematics and Computation, 177, 2, 807-818 (2006) · Zbl 1096.92031 · doi:10.1016/j.amc.2005.11.092
[18] Fleming, W. H.; Rishel, R. W., Deterministic and Stochastic Optimal Control, 1 (1975), New York, NY, USA: Springer, New York, NY, USA · Zbl 0323.49001
[19] World Health Organization, March 2014 supplement to the 2013 consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: recommendations for a public health approach, 2014
[20] Kramer, V. G.; Schader, S. M.; Oliveira, M.; Colby-Germinario, S. P.; Donahue, D. A.; Singhroy, D. N.; Tressler, R.; Sloan, R. D.; Wainberg, M. A., Maraviroc and other HIV-1 entry inhibitors exhibit a class-specific redistribution effect that results in increased extracellular viral load, Antimicrobial Agents and Chemotherapy, 56, 8, 4154-4160 (2012) · doi:10.1128/AAC.00409-12
[21] Shen, L.; Rabi, S. A.; Sedaghat, A. R.; Shan, L.; Lai, J.; Xing, S.; Siliciano, R. F., A critical subset model provides a conceptual basis for the high antiviral activity of major HIV drugs, Science Translational Medicine, 3, 91 (2011) · doi:10.1126/scitranslmed.3002304
[22] Shi, S.; Nguyen, P. K.; Cabral, H. J.; Diez-Barroso, R.; Derry, P. J.; Kanahara, S. M.; Kumar, V. A., Development of peptide inhibitors of HIV transmission, Bioactive Materials, 1, 2, 109-121 (2016) · doi:10.1016/j.bioactmat.2016.09.004
[23] Allers, K.; Schneider, T., CCR5Δ32 mutation and HIV infection: Basis for curative HIV therapy, Current Opinion in Virology, 14, 24-29 (2015) · doi:10.1016/j.coviro.2015.06.007
[24] Autran, B.; Carcelain, G.; Li, T. S.; Blanc, C.; Mathez, D.; Tubiana, R.; Katlama, C.; Debré, P.; Leibowitch, J., Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease, Science, 277, 5322, 112-116 (1997) · doi:10.1126/science.277.5322.112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.