×

Thermodynamics of charged dilatonic BTZ black holes in rainbow gravity. (English) Zbl 1411.83081

Summary: In this paper, the charged three-dimensional Einstein’s theory coupled to a dilatonic field has been considered in the rainbow gravity. The dilatonic potential has been written as the linear combination of two Liouville-type potentials. Four new classes of charged dilatonic rainbow black hole solutions, as the exact solution to the coupled field equations of the energy dependent space time, have been obtained. Two of them correspond to the Coulomb’s electric field and the others are consequences of a modified Coulomb’s law. Total charge and mass as well as the entropy, temperature and electric potential of the new charged black holes have been calculated in the presence of rainbow functions. Although the thermodynamic quantities are affected by the rainbow functions, it has been found that the first law of black hole thermodynamics is still valid for all of the new black hole solutions. At the final stage, making use of the canonical ensemble method and regarding the black hole heat capacity, the thermal stability or phase transition of the new rainbow black hole solutions have been analyzed.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C57 Black holes

References:

[1] Kostelecky, V. A.; Samuel, S., Phys. Rev. D, 39, 683 (1989)
[2] Gambini, R.; Pullin, J., Phys. Rev. D, 59, Article 124021 pp. (1999)
[3] Carroll, S. M.; Harvey, J. A.; Kosteleck‘y, V. A.; Lane, C. D.; Okamoto, T., Phys. Rev. Lett., 87, Article 141601 pp. (2001)
[4] Calmet, X.; Graesser, M.; Hsu, S. D.H., Phys. Rev. Lett., 93, Article 211101 pp. (2004)
[5] Maggiore, M., Phys. Lett. B, 304, 65 (1993)
[6] Horava, P., Phys. Rev. Lett., 102, Article 161301 pp. (2009)
[7] Hendi, S.h., Gen. Relativ. Gravit., 48, 50 (2016) · Zbl 1338.83132
[8] Amelino-Camelia, G., Int. J. Mod. Phys. D, 11, 35 (2002) · Zbl 1062.83500
[9] Magueijo, J.; Smolin, L., Phys. Rev. Lett., 88, Article 190403 pp. (2002)
[10] Kostelecky, V. A.; Samuel, S., Phys. Rev. D, 39, 683 (1989)
[11] Magueijo, J.; Smolin, L., Phys. Rev. D, 71, Article 026010 pp. (2005)
[12] Feng, Z-W.; Yang, S-Z., Phys. Lett. B, 772, 737 (2017)
[13] Magueijo, J.; Smolin, L., Phys. Rev. D, 67, Article 044017 pp. (2003)
[14] Amelino-Camelia, G.; Ellis, J.r.; Mavromatos, N.; Nanopoulos, D. V., Int. J. Mod. Phys. A, 12, 607 (1997) · Zbl 1170.83375
[15] Amelino-Camelia, G.; Ellis, J. R.; Mavromatos, N. E.; Nanopoulos, D. V.; Sarkar, S., Nature, 393, 763 (1998)
[16] Ling, Y.; Li, X.; Zhang, H., Mod. Phys. Lett. A, 36, 2749 (2007) · Zbl 1143.83310
[17] Hendi, S. H.; Panahiyan, S.; Eslam Panah, B.; Momennia, M., Eur. Phys. J. C, 77, 647 (2017)
[18] Alsaleh, S., Int. J. Mod. Phys. A, 32, Article 1750076 pp. (2017) · Zbl 1366.83030
[19] Hendi, S. H.; Faizal, M., Phys. Rev. D, 92, Article 044027 pp. (2015)
[20] Hendi, S. H.; Panahiyan, S.; Eslam Panah, B.; Faizal, M.; Momennia, M., Phys. Rev. D, 94, Article 044028 pp. (2016)
[21] Hendi, S. H.; Eslam Panah, B.; Panahiyan, S., Phys. Lett. B, 769, 191 (2017) · Zbl 1370.83078
[22] Ali, A. F.; Faizal, M.; Khalile, M. M., Nucl. Phys. B, 894, 341 (2015) · Zbl 1328.83061
[23] Ali, A. F., Phys. Rev. D, 89, Article 104040 pp. (2014)
[24] Hendi, S. H.; Momennia, M.; Eslam Panah, B.; Faizal, M., Astrophys. J., 827, 153 (2016)
[25] Pourhassan, B.; Faizal, M.; Upadhyay, S.; Al Asfar, L., Eur. Phys. J. C, 77, 555 (2017)
[26] Upadhyay, S.; Pourhassan, B.; Farahani, H., Phys. Rev. D, 95, Article 106014 pp. (2017)
[27] Pourhassan, B.; Upadhyay, S.; Saadat, H.; Farahani, H.
[28] Pourhassan, B.; Upadhyay, S.; Farahani, H.
[29] Upadhyay, S.; Pourhassan, B.
[30] Upadhyay, S., Phys. Lett. B, 775, 130 (2017)
[31] Dehghani, M., Phys. Lett. B, 749, 125 (2015) · Zbl 1364.83020
[32] Hendi, S. H.; Eslam Panah, B.; Panahiyan, S., Prog. Theor. Exp. Phys., 2016, 10, Article 103A02 pp. (2016) · Zbl 1361.83022
[33] Hendi, S. H.; Faizal, Mir; Eslam Panah, B.; Panahiyan, S., Eur. Phys. J. C, 76, 296 (2016)
[34] Hendi, S. H.; Eslam Panah, B.; Panahiyan, S.; Sheykhi, A., Phys. Lett. B, 767, 214 (2017) · Zbl 1404.83052
[35] Dehghani, M., Phys. Lett. B, 773, 105 (2017) · Zbl 1378.83035
[36] Dehghani, M., Phys. Rev. D, 96, Article 044014 pp. (2017)
[37] Sheykhi, A., Phys. Rev. D, 86, Article 024013 pp. (2012)
[38] Dehghani, M.; Hamidi, S. F., Phys. Rev. D, 96, Article 044025 pp. (2017)
[39] Abbott, L. F.; Deser, S., Nucl. Phys. B, 195, 76 (1982) · Zbl 0900.53033
[40] Olea, R., J. High Energy Phys., 06, Article 023 pp. (2005)
[41] Kofinas, G.; Olea, R., Phys. Rev. D, 74, Article 084035 pp. (2006)
[42] Kord Zangeneh, M.; Sheykhi, A.; Dehghani, M. H., Phys. Rev. D, 91, Article 044035 pp. (2015)
[43] Kord Zangeneh, M.; Sheykhi, A.; Dehghani, M. H., Phys. Rev. D, 92, Article 024050 pp. (2015)
[44] Kord Zangeneh, M.; Sheykhi, A.; Dehghani, M. H., Eur. Phys. J. C, 75, 497 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.