×

Invasion waves and pinning in the Kirkpatrick-Barton model of evolutionary range dynamics. (English) Zbl 1411.35162

Summary: The Kirkpatrick-Barton model, well known to invasion biologists, is a pair of reaction-diffusion equations for the joint evolution of population density and the mean of a quantitative trait as functions of space and time. Here we prove the existence of two classes of coherent structures, namely “bounded trait mean differential” traveling waves and localized stationary solutions, using geometric singular perturbation theory. We also give numerical examples of these (when they appear to be stable) and of “unbounded trait mean differential” solutions. Further, we provide numerical evidence of bistability and hysteresis for this system, modeling an initially confined population that colonizes new territory when some biotic or abiotic conditions change, and remains in its enlarged range even when conditions change back. Our analytical and numerical results indicate that the dynamics of this system are more complicated than previously recognized, and help make sense of evolutionary range dynamics predicted by other models that build upon it and sometimes challenge its predictions.

MSC:

35K57 Reaction-diffusion equations
35Q92 PDEs in connection with biology, chemistry and other natural sciences
92D40 Ecology
92D15 Problems related to evolution
Full Text: DOI

References:

[1] Abramowitz M, Stegun IA (1964) Handbook of mathematical functions: with formulas, graphs, and mathematical tables, vol. 55. Courier Corporation · Zbl 0171.38503
[2] Alfaro M, Berestycki H, Raoul G (2017) The effect of climate shift on a species submitted to dispersion, evolution, growth, and nonlocal competition. SIAM J Math Anal 49(1):562-596 · Zbl 1364.35377 · doi:10.1137/16M1075934
[3] Alfaro M, Coville J, Raoul G (2013) Travelling waves in a nonlocal reaction – diffusion equation as a model for a population structured by a space variable and a phenotypic trait. Commun Partial Differ Equ 38(12):2126-2154 · Zbl 1284.35446 · doi:10.1080/03605302.2013.828069
[4] Barton, N.; Silvertown, J. (ed.); Antonovics, J. (ed.), Adaptation at the edge of a species’ range, No. 14, 365-392 (2001), Oxford
[5] Berestycki H, Chapuisat G (2012) Traveling fronts guided by the environment for reaction-diffusion equations. arXiv preprint arXiv:1206.6575 · Zbl 1270.35165
[6] Bouin E, Calvez V (2014) Travelling waves for the cane toads equation with bounded traits. Nonlinearity 27(9):2233 · Zbl 1301.35187 · doi:10.1088/0951-7715/27/9/2233
[7] Bridle JR, Polechová J, Kawata M, Butlin RK (2010) Why is adaptation prevented at ecological margins? New insights from individual-based simulations. Ecol Lett 13(4):485-494 · doi:10.1111/j.1461-0248.2010.01442.x
[8] Case TJ, Taper ML (2000) Interspecific competition, environmental gradients, gene flow, and the coevolution of species’ borders. Am Nat 155(5):583-605 · doi:10.1086/303351
[9] Colautti RI, Lau JA (2015) Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol Ecol 24(9):1999-2017 · doi:10.1111/mec.13162
[10] Dlugosch KM, Anderson SR, Braasch J, Cang FA, Gillette HD (2015) The devil is in the details: genetic variation in introduced populations and its contributions to invasion. Mol Ecol 24(9):2095-2111. URL http://onlinelibrary.wiley.com/doi/10.1111/mec.13183/abstract
[11] Fenichel N (1979) Geometric singular perturbation theory for ordinary differential equations. J Differ Equ 31(1):53-98 · Zbl 0476.34034 · doi:10.1016/0022-0396(79)90152-9
[12] Fisher RA (1937) The wave of advance of advantageous genes. Ann Hum Genet 7(4):355-369 · JFM 63.1111.04
[13] García-Ramos G, Rodríguez D (2002) Evolutionary speed of species invasions. Evolution 56(4):661-668 · doi:10.1554/0014-3820(2002)056[0661:ESOSI]2.0.CO;2
[14] Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, Oxford
[15] Haldane J (1956) The relation between density regulation and natural selection. Proc R Soc Lond Ser B Biol Sci 145(920):306-308 · doi:10.1098/rspb.1956.0039
[16] Hek G (2010) Geometric singular perturbation theory in biological practice. J Math Biol 60(3):347-386 · Zbl 1311.34133 · doi:10.1007/s00285-009-0266-7
[17] Iserles A (2009) A first course in the numerical analysis of differential equations, vol 44. Cambridge University Press, Cambridge · Zbl 1171.65060
[18] Jones, CK; Johnson, R. (ed.), Geometric singular perturbation theory, 44-118 (1995), New York · Zbl 0840.58040 · doi:10.1007/BFb0095239
[19] Kaper TJ (1999) An introduction to geometric methods and dynamical systems theory for singular perturbation problems. In: Cronin J, O’Malley REJ (eds) Analyzing multiscale phenomena using singular perturbation methods: American mathematical society short course, January 5-6, 1998, Baltimore, Maryland, p 85. No. 56 in Proceedings of symposia in applied mathematics. American Mathematical Society
[20] Kirkpatrick M, Barton NH (1997) Evolution of a species’ range. Am Nat 150(1):1-23 · doi:10.1086/286054
[21] Kuehn C (2015) Multiple time scale dynamics. Springer, Cham · Zbl 1335.34001 · doi:10.1007/978-3-319-12316-5
[22] Liao H, D’Antonio CM, Chen B, Huang Q, Peng S (2016) How much do phenotypic plasticity and local genetic variation contribute to phenotypic divergences along environmental gradients in widespread invasive plants? A meta-analysis. Oikos 125(7):905-917 · doi:10.1111/oik.02372
[23] Mayr E (1963) Animal species and evolution. Belknap Press of Harvard University Press, Cambridge · doi:10.4159/harvard.9780674865327
[24] Miller JR, Zeng H (2014) Range limits in spatially explicit models of quantitative traits. J Math Biol 68(1-2):207-234 · Zbl 1345.92122 · doi:10.1007/s00285-012-0628-4
[25] Mirrahimi S, Raoul G (2013) Dynamics of sexual populations structured by a space variable and a phenotypical trait. Theor Popul Biol 84:87-103 · Zbl 1275.92098 · doi:10.1016/j.tpb.2012.12.003
[26] Perko L (2013) Differential equations and dynamical systems. Springer, New York · Zbl 0717.34001
[27] Polechová J, Barton NH (2015) Limits to adaptation along environmental gradients. Proc Nat Acad Sci 112(20):6401-6406 · doi:10.1073/pnas.1421515112
[28] Ruuth SJ (1995) Implicit-explicit methods for reaction – diffusion problems in pattern formation. J Math Biol 34(2):148-176 · Zbl 0835.92006 · doi:10.1007/BF00178771
[29] Sherratt JA (1998) On the transition from initial data to travelling waves in the fisher-kpp equation. Dyn Stab Syst 13(2):167-174 · Zbl 0912.35084 · doi:10.1080/02681119808806258
[30] Szmolyan P (1991) Transversal heteroclinic and homoclinic orbits in singular perturbation problems. J Differ Equ 92(2):252-281 · Zbl 0734.34038 · doi:10.1016/0022-0396(91)90049-F
[31] Taylor AE (1952) L’hospital’s rule. Am Math Mon 59(1):20-24 · Zbl 0046.06202 · doi:10.1080/00029890.1952.11988058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.