×

Full-parameter discrete Painlevé systems from non-translational Cremona isometries. (English) Zbl 1411.34116

Summary: Since the classification of discrete Painlevé equations in terms of rational surfaces, there has been much interest in the range of integrable equations arising from each of the 22 surface types in Sakai’s list [H. Sakai, Commun. Math. Phys. 220, No. 1, 165–229 (2001; Zbl 1010.34083)]. For all but the most degenerate type in the list, the surfaces come in families which admit affine Weyl groups of symmetries, translation elements of which define discrete Painlevé equations with the same number of parameters as their family of surfaces. While non-translation elements of the symmetry group have been observed to correspond to discrete systems of Painlevé-type through projective reduction, the resulting equations have fewer than the maximal number of free parameters corresponding to their surface type. We show that equations with the full number of free parameters can be constructed from non-translation elements of infinite order in the symmetry group, constructing several examples and demonstrating their integrability. This is prompted by the study of a previously proposed discrete Painlevé equation related to a special class of discrete analogues of surfaces of constant negative Gaussian curvature [T. Hoffmann, Bobenko, Alexander I. (ed.) et al., Discrete integrable geometry and physics. Based on the conference on condensed matter physics and discrete geometry, Vienna, Austria, February 1996. Oxford: Clarendon Press. Oxf. Lect. Ser. Math. Appl. 16, 83–96 (1999; Zbl 0944.53006)]. We obtain a full-parameter generalisation of this equation from the Cremona action of a non-translation element of the extended affine Weyl group \(\widetilde{W}(D_4^{(1)})\) on a family of generic \(D_4^{(1)}\)-surfaces.

MSC:

34M55 Painlevé and other special ordinary differential equations in the complex domain; classification, hierarchies
14H70 Relationships between algebraic curves and integrable systems
14E07 Birational automorphisms, Cremona group and generalizations
33D52 Basic orthogonal polynomials and functions associated with root systems (Macdonald polynomials, etc.)
39A12 Discrete version of topics in analysis
39A10 Additive difference equations
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems

References:

[1] Sakai, H., Commun. Math. Phys., 220, 165-229, (2001) · Zbl 1010.34083 · doi:10.1007/s002200100446
[2] Hoffmann, T.; Bobenko, A. I.; Seiler, R., Discrete Amsler surfaces and a discrete Painlevé III equation, ch 3, 83-96, (1999), Oxford: Oxford University Press, Oxford · Zbl 0944.53006
[3] Okamoto, K., Japan. J. Math., 5, 1-79, (1979) · Zbl 0426.58017 · doi:10.4099/math1924.5.1
[4] Kajiwara, K.; Noumi, M.; Yamada, Y., J. Phys. A: Math. Theor., 50, (2017) · Zbl 1441.34095 · doi:10.1088/1751-8121/50/7/073001
[5] Dzhamay, A.; Takenawa, T., SIGMA Sym. Integ. Geom. Methods Appl., 14, 075, (2018) · Zbl 1396.37068 · doi:10.3842/SIGMA.2018.075
[6] Joshi, N.; Nakazono, N., J. Phys. A: Math. Theor., 50, (2017) · Zbl 1381.39010 · doi:10.1088/1751-8121/aa7915
[7] Ramani, A.; Grammaticos, B., Phys. Lett. A, 373, 3028-3031, (2009) · Zbl 1233.34038 · doi:10.1016/j.physleta.2009.06.034
[8] Atkinson, J.; Howes, P.; Joshi, N.; Nakazono, N., J. Lond. Math. Soc. (2), 93, 763-784, (2016) · Zbl 1350.33039 · doi:10.1112/jlms/jdw020
[9] Hay, M.; Howes, P.; Nakazono, N.; Shi, Y., J. Phys. A: Math. Theor., 48, (2015) · Zbl 1325.37042 · doi:10.1088/1751-8113/48/9/095201
[10] Kajiwara, K.; Nakazono, N.; Tsuda, T., Int. Math. Res. Not., 2011, 930-966, (2011) · Zbl 1211.39005 · doi:10.1093/imrn/rnq089
[11] Takenawa, T., Funkcial. Ekvac., 46, 173-186, (2003) · Zbl 1151.34341 · doi:10.1619/fesi.46.173
[12] Bianchi, L., Vorlesungen über Differentialgeometrie, (1899), Leipzig: B.G. Teubner, Leipzig · JFM 29.0515.01
[13] Amsler, M. H., Math. Ann., 130, 234-256, (1955) · Zbl 0068.35102 · doi:10.1007/BF01343351
[14] Bobenko, A.; Pinkall, U., J. Differ. Geom., 43, 527-611, (1996) · Zbl 1059.53500 · doi:10.4310/jdg/1214458324
[15] Hirota, R., J. Phys. Soc. Japan, 43, 2079-2086, (1977) · Zbl 1334.39015 · doi:10.1143/JPSJ.43.2079
[16] Bellon, M. P.; Viallet, C. M., Commun. Math. Phys., 204, 425-437, (1999) · Zbl 0987.37007 · doi:10.1007/s002200050652
[17] Grammaticos, B.; Ramani, A.; Papageorgiou, V., Phys. Rev. Lett., 67, 1825-1828, (1991) · Zbl 0990.37518 · doi:10.1103/PhysRevLett.67.1825
[18] Quispel, G. R W.; Roberts, J. A G.; Thompson, C. J., Physica D, 34, 183-192, (1989) · Zbl 0679.58024 · doi:10.1016/0167-2789(89)90233-9
[19] Quispel, G. R W.; Roberts, J. A G.; Thompson, C. J., Phys. Lett. A, 126, 419-421, (1988) · Zbl 0679.58023 · doi:10.1016/0375-9601(88)90803-1
[20] Ramani, A.; Grammaticos, B.; Hietarinta, J., Phys. Rev. Lett., 67, 1829-1832, (1991) · Zbl 1050.39500 · doi:10.1103/PhysRevLett.67.1829
[21] Matano, T.; Matumiya, A.; Takano, K., J. Math. Soc. Japan, 51, 843-866, (1999) · Zbl 0941.34076 · doi:10.2969/jmsj/05140843
[22] Matumiya, A., Kumamoto J. Math., 10, 45-73, (1997) · Zbl 0887.34006
[23] Shioda, T.; Takano, K., Funkcial. Ekvac., 40, 271-291, (1997) · Zbl 0891.34003
[24] Saito, M. H.; Takebe, T., Kobe J. Math., 19, 21-50, (2002) · Zbl 1055.34144
[25] Saito, M. H.; Takebe, T.; Terajima, H., J. Algebr. Geom., 11, 311-362, (2002) · Zbl 1022.34079 · doi:10.1090/S1056-3911-01-00316-2
[26] Kruskal, M. D.; Tamizhmani, K. M.; Grammaticos, B.; Ramani, A., Regul. Chaotic Dyn., 5, 273-280, (2000) · Zbl 0983.34083 · doi:10.1070/rd2000v005n03ABEH000149
[27] Ramani, A.; Grammaticos, B., Physica A, 228, 160-171, (1996) · Zbl 0912.34011 · doi:10.1016/0378-4371(95)00439-4
[28] Kajiwara, K.; Noumi, M.; Yamada, Y., J. Phys. A: Math. Gen., 34, 8563-8581, (2001) · Zbl 1002.39030 · doi:10.1088/0305-4470/34/41/312
[29] Joshi, N.; Nakazono, N.; Shi, Y., J. Integrable Syst., 1, (2016) · Zbl 1400.37078 · doi:10.1093/integr/xyw006
[30] Dolgachev, I. V., Singularities, part 1 (Arcata, CA, 1981), 283-294, (1983), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0527.14013
[31] Looijenga, E., Ann. Math. (2), 114, 267-322, (1981) · Zbl 0509.14035 · doi:10.2307/1971295
[32] Kac, V. G., Infinite-Dimensional Lie Algebras, vol 44, (1994), Cambridge: Cambridge University Press, Cambridge
[33] Ohta, Y.; Ramani, A.; Grammaticos, B., J. Phys. A: Math. Gen., 34, 10523-10532, (2001) · Zbl 1002.39029 · doi:10.1088/0305-4470/34/48/316
[34] Murata, M.; Sakai, H.; Yoneda, J., J. Math. Phys., 44, 1396-1414, (2003) · Zbl 1062.34102 · doi:10.1063/1.1531216
[35] Takenawa, T., J. Phys. A: Math. Gen., 34, 10533-10545, (2001) · Zbl 0999.37028 · doi:10.1088/0305-4470/34/48/317
[36] Grammaticos, B.; Ramani, A.; Tamizhmani, K. M.; Tamizhmani, T.; Satsuma, J., J. Math. Phys., 55, (2014) · Zbl 1295.39003 · doi:10.1063/1.4874111
[37] Grammaticos, B.; Ramani, A.; Tamizhmani, K. M.; Tamizhmani, T.; Satsuma, J., J. Math. Phys., 57, (2016) · Zbl 1383.39019 · doi:10.1063/1.4947061
[38] Carstea, A. S.; Dzhamay, A.; Takenawa, T., J. Phys. A: Math. Theor., 50, (2017) · Zbl 1375.14144 · doi:10.1088/1751-8121/aa86c3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.