×

On the asymptotic expansions of products related to the Wallis, Weierstrass, and Wilf formulas. (English) Zbl 1411.33001

Summary: For all integers \(n\geq1\), let \[ W_n(p, q) = \prod_{j = 1}^n \left\{e^{- p / j}\left(1 + \frac{p}{j} + \frac{q}{j^2}\right) \right\} \] and \[ R_n(p, q) = \prod_{j = 1}^n \left\{e^{- p /(2 j - 1)}\left(1 + \frac{p}{2 j - 1} + \frac{q}{(2 j - 1)^2}\right) \right\}, \] where \(p\), \(q\) are complex parameters. The infinite product \(W_{\infty}(p,q)\) includes the Wallis and Wilf formulas, and also the infinite product definition of Weierstrass for the gamma function, as special cases. In this paper, we present asymptotic expansions of \(W_{n}(p,q)\) and \(R_{n}(p,q)\) as \(n\rightarrow\infty\). In addition, we also establish asymptotic expansions for the Wallis sequence.

MSC:

33B15 Gamma, beta and polygamma functions
40A25 Approximation to limiting values (summation of series, etc.)
41A60 Asymptotic approximations, asymptotic expansions (steepest descent, etc.)

References:

[1] Abramowitz, M.; Stegun, I. A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, Applied Mathematics Series, vol. 55 (1972), 9th printing, National Bureau of Standards: 9th printing, National Bureau of Standards Dover, New York · Zbl 0543.33001
[2] Agarwal, R. P.; Agarwal, H.; Sen, S. K., Birth, growth and computation of pi to ten trillion digits, Adv. Difference Equ., 2013, 100 (2013) · Zbl 1380.01012
[3] Amdeberhan, T.; Espinosa, O.; Moll, V. H.; Straub, A., Wallis-Ramanujan-Schur-Feynman, Am. Math. Mon., 117, 618-632 (2010) · Zbl 1202.01061
[4] Beckmann, P., A History of Pi (1971), St. Martin’s Press: St. Martin’s Press New York, NY · Zbl 0221.01002
[5] Berggren, L.; Borwein, J.; Borwein, P., Pi: A Source Book (2000), Springer: Springer New York · Zbl 1039.11001
[6] Buric, T.; Elezović, N.; Šimić, R., Asymptotic expansions of the multiple quotients of gamma functions with applications, Math. Inequal. Appl., 16, 1159-1170 (2013) · Zbl 1286.33003
[7] Chen, C.-P.; Choi, J., Two infinite product formulas with two parameters, Integral Transforms Spec. Funct., 24, 357-363 (2013) · Zbl 1275.33003
[8] Chen, C.-P.; Elezović, N.; Vukšić, L., Asymptotic formulae associated with the Wallis power function and digamma function, J. Class. Anal., 2, 151-166 (2013) · Zbl 1412.33001
[9] Chen, C.-P.; Paris, R. B., Generalizations of two infinite product formulas, Integral Transforms Spec. Funct., 25, 547-551 (2014) · Zbl 1303.33001
[10] Chen, C.-P.; Paris, R. B., On the asymptotics of products related to generalizations of the Wilf and Mortini problems, Integral Transforms Spec. Funct., 27, 281-288 (2016) · Zbl 1350.33001
[11] Choi, J.; Lee, J.; Srivastava, H. M., A generalization of Wilf’s formula, Kodai. Math. J., 26, 44-48 (2003) · Zbl 1040.11062
[12] Choi, J.; Seo, T. Y., Identities involving series of the Riemann zeta function, Indian J. Pure Appl. Math., 30, 649-652 (1999) · Zbl 0934.11041
[13] Deng, J.-E.; Ban, T.; Chen, C.-P., Sharp inequalities and asymptotic expansion associated with the Wallis sequence, J. Ineq. Appl., 2015, 186 (2015) · Zbl 1373.41023
[14] Dunham, W., Journey Through Genius, The Great Theorems of Mathematics (1990), Penguin · Zbl 0713.01001
[15] Elezović, N.; Lin, L.; Vukšić, L., Inequalities and asymptotic expansions for the Wallis sequence and the sum of the Wallis ratio, J. Math. Inequal., 7, 679-695 (2013) · Zbl 1306.33005
[16] Guillera, J.; Sondow, J., Double integrals and infinite products for some classical constants via analytic continuations of Lerch’s transcendent, Ramanujan J., 16, 247-270 (2008) · Zbl 1216.11075
[17] Hirschhorn, M. D., Comments on the paper “Wallis sequence estimated through the Euler-Maclaurin formula: even from the Wallis product \(π\) could be computed fairly accurately” by V. Lampret, Aust. Math. Soc. Gaz., 32, 194 (2005) · Zbl 1111.40003
[18] Lampret, V., An asymptotic approximation of Wallis’ sequence, Cent. Eur. J. of Math., 10, 775-787 (2012) · Zbl 1252.40002
[19] Lampret, V., Wallis sequence estimated through the Euler-Maclaurin formula: even from the Wallis product \(π\) could be computed fairly accurately, Austral. Math. Soc. Gaz., 31, 328-339 (2004)
[20] Lin, L., Further refinements of Gurland’s formula for \(π\), J. Ineq. Appl., 2013, 48 (2013) · Zbl 1282.33004
[21] Lin, L.; Deng, J.-E.; Chen, C.-P., Inequalities and asymptotic expansions associated with the Wallis sequence, J. Ineq. Appl., 2014, 251 (2014) · Zbl 1373.41025
[22] Luke, Y. L., The Special Functions and their Approximations, vol. I (1969), Academic Press: Academic Press New York · Zbl 0193.01701
[23] Miller, S. J., A probabilistic proof of Wallis’s formula for \(π\), Am. Math. Monthly, 115, 740-745 (2008) · Zbl 1229.11165
[24] Mortici, C., Estimating \(π\) from the Wallis sequence, Math. Commun., 17, 489-495 (2012) · Zbl 1261.40002
[25] Mortici, C.; Cristea, V. G.; Lu, D., Completely monotonic functions and inequalities associated to some ratio of gamma function, Appl. Math. Comput., 240, 168-174 (2014) · Zbl 1334.33010
[26] Mortici, C., Completely monotone functions and the Wallis ratio, Appl. Math. Lett., 25, 717-722 (2012) · Zbl 1242.33005
[27] Mortici, C., Sharp inequalities and complete monotonicity for the Wallis ratio, Bull. Belg. Math. Soc. Simon Stevin, 17, 929-936 (2010) · Zbl 1209.26026
[28] Mortici, C., A new method for establishing and proving new bounds for the Wallis ratio, Math. Inequal. Appl., 13, 803-815 (2010) · Zbl 1206.33006
[29] Mortici, C., New approximation formulas for evaluating the ratio of gamma functions, Math. Comput. Model., 52, 425-433 (2010) · Zbl 1201.33003
[30] Myerson, G., The limiting shape of a sequence of rectangles, Am. Math. Monthly, 99, 279-280 (1992)
[31] Păltănea, E., On the rate of convergence of Wallis’ sequence, Aust. Math. Soc., 34, 34-38 (2007) · Zbl 1185.26004
[32] Ser, J., Sur une expression de la fonction \(ζ(s)\) de Riemann, C. R. Acad. Sci. Paris Sér. I Math., 182, 1075-1077 (1926) · JFM 52.0338.02
[33] Sofo, A., Some representations of \(π\), Austral. Math. Soc. Gaz., 31, 184-189 (2004) · Zbl 1119.11324
[34] Sofo, A., \(π\) and some other constants, J. Inequal. Pure Appl. Math., 6, 5 (2005) · Zbl 1127.33003
[36] Sondow, J., A faster product for \(π\) and a new integral for ln \((π/2)\), Am. Math. Monthly, 112, 729-734 (2005) · Zbl 1159.11328
[37] Wästlund, J., An elementary proof of the Wallis product formula for Pi, Am. Math. Monthly, 114, 914-917 (2007) · Zbl 1132.11372
[39] Wilf, H. S., Problem 10588, problems and solutions, Am. Math. Monthly, 104, 456 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.