×

Assessing eulerian-Lagrangian simulations of dense solid-liquid suspensions settling under gravity. (English) Zbl 1410.76454

Summary: We study dense solid-liquid suspensions through numerical simulations. The liquid flow is solved by the lattice-Boltzmann method on a fixed (Eulerian), cubic, uniform grid. Spherical solid particles are tracked through that grid. Our main interest is in cases where the grid spacing and the particle diameter have the same order of magnitude (\(d / \Delta = O(1)\)). Critical issues then are the mapping operations that relate properties on the grid and properties of the particles, e.g., the local solids volume fraction seen by a particle, or the distribution of solid-to-liquid hydrodynamic forces over grid points adjacent to a particle. For assessing the mapping operations we compare results for particles settling under gravity in fully periodic, three-dimensional domains of simulations with \(d / \Delta = O(1)\) to much higher resolved simulations (\(d / \Delta = O(10)\)) that do not require mapping. Comparisons are made in terms of average slip velocities as well as in terms of liquid and fluid velocity fluctuation levels. Solids volume fractions are in the range 0.3 to 0.5, Reynolds numbers are of order 0.1 to 10.

MSC:

76T20 Suspensions
76M28 Particle methods and lattice-gas methods
Full Text: DOI

References:

[1] Nagy, Z. K.; Fevotte, G.; Kramer, H.; Simon, L. L., Recent advances in the monitoring, modelling and control of crystallization systems, Chem Eng Res Des, 91, 1903-1922, (2013)
[2] Buffington, J. M.; Montgomery, D. R., A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers, Water Resour Res, 33, 1993-2029, (1997)
[3] Dudukovic, M. P.; Larachi, F.; Mills, P. L., Multiphase reactors - revisited, Chem Eng Sc, 54, 1975-1995, (1999)
[4] Gillies, R. G.; Shook, C. A., Modeling high concentration settling slurry flows, Can J Chem Eng, 78, 709-716, (2000)
[5] Laín, S.; Sommerfeld, M., Characterisation of pneumatic conveying systems using the Euler/Lagrange approach, Powder Technol, 235, 764-782, (2013)
[6] Kidanemariam, A. G.; Uhlmann, M., Direct numerical simulation of pattern formation in subaqueous sediment, J Fluid Mech, 750, 1-13, (2014), R2
[7] Deen, N. G.; Kriebitzsch, S. H.L.; van der Hoef, M. A.; Kuipers, J. A.M., Multi-scale modeling of dispersed gas-liquid two-phase flows, Chem Eng Sc, 81, 329-344, (2012)
[8] Derksen, J. J., Numerical simulation of solids suspension in a stirred tank, AIChE J, 49, 2700-2714, (2003)
[9] Derksen, J. J., Simulations of scalar dispersion in fluidized solid-liquid suspensions, AIChE J, 60, 1880-1890, (2014)
[10] Derksen, J. J.; Sundaresan, S., Direct numerical simulations of dense suspensions: wave instabilities in liquid-fluidized beds, J Fluid Mech, 587, 303-336, (2007) · Zbl 1141.76463
[11] Schiller, L.; Naumann, A., Uber die grundlagenden Berechnungen bei der Schwerkraftaufbereitung, Ver Deut Ing Z, 77, 318-320, (1933)
[12] Derksen, J. J., Simulations of hindered settling of flocculating spherical particles, Int J Multiphase Flow, 58, 127-138, (2014)
[13] Somers, J. A., Direct simulation of fluid flow with cellular automata and the lattice-Boltzmann equation, App Sci Res, 51, 127-133, (1993) · Zbl 0778.76043
[14] Eggels, J. G.M.; Somers, J. A., Numerical simulation of free convective flow using the lattice-Boltzmann scheme, Int J Heat Fluid Flow, 16, 357-364, (1995)
[15] Sungkorn, R.; Derksen, J. J., Simulations of dilute sedimenting suspensions at finite-particle Reynolds numbers, Phys Fluids, 24, (2012)
[16] Kitagawa, A.; Murai, Y.; Yamamoto, F., Two-way coupling of Eulerian-Lagrangian model for dispersed multiphase flows using filtering functions, Int J Multiphase Flow, 27, 2129-2153, (2001) · Zbl 1137.76637
[17] Deen, N. G.; van SintAnnaland, M.; Kuipers, J. A.M., Multi-scale modeling of dispersed gas-liquid two-phase flow, Chem Eng Sc, 59, 1853-1861, (2004)
[18] Wylie, J. J.; Koch, D. L.; Ladd, A,J,C., Rheology of suspensions with high particle inertia and moderate fluid inertia, J Fluid Mech, 480, 95-118, (2003) · Zbl 1063.76653
[19] Hill, R. J.; Koch, D. L.; Ladd, A. J.C., Moderate-Reynolds-number flows in ordered and random arrays of spheres, J Fluid Mech, 448, 243-278, (2001) · Zbl 0997.76068
[20] Kandhai, D.; Derksen, J. J.; van den Akker, H. E.A., Interphase drag coefficients in gas-solid flows, AIChE J, 49, 1060-1065, (2003)
[21] van der Hoef, M. A.; Beetstra, R.; Kuipers, J. A.M., Lattice-Boltzmann simulations of low-Reynolds-number flow past mono- and bidisperse arrays of spheres: results for the permeability and drag force, J Fluid Mech, 528, 233-254, (2005) · Zbl 1165.76369
[22] Tenneti, S.; Garg, R.; Subramaniam, S., Drag law for monodisperse gas-solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres, Int J Multiphase Flow, 37, 1072-1092, (2011)
[23] Rubinstein, G. J.; Derksen, J. J.; Sundaresan, S., Lattice-Boltzmann simulations of low-Reynolds number flow past fluidized spheres: effect of Stokes number on drag force, J Fluid Mech, 788, 576-601, (2016) · Zbl 1381.76300
[24] Richardson, J. F.; Zaki, W. N., 1954 Sedimentation and fluidisation, Part 1. Trans Inst Chem Eng, 32, 35-53, (1954)
[25] Wen, C. Y.; Yu, Y. H., Mechanics of fluidization, Chem Eng Prog, 62, 100-111, (1966)
[26] Di Felici, R., The voidage function for fluid-particle interaction systems, Int J Multiphase Flow, 20, 155-159, (1994) · Zbl 1134.76530
[27] Succi, S., The lattice boltzmann equation for fluid dynamics and beyond, (2001), Clarendon Press: Clarendon Press Oxford · Zbl 0990.76001
[28] Kim, S.; Karrila, S. J., Microhydrodynamics: principles and selected applications, (1991), Butterworth-Heinemann
[29] Shardt, O.; Derksen, J. J., Direct simulations of dense suspensions of non-spherical particles, Int J Multiphase Flow, 47, 25-36, (2012)
[30] Capecelatro, J.; Desjardins, O., An Euler-Lagrange strategy for simulating particle-laden flows, J Comp Phys, 238, 1-31, (2013) · Zbl 1286.76142
[31] Derksen, J. J., Highly resolved simulations of solids suspension in a small mixing tank, AIChE J, 58, 3266-3278, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.