×

Isothermal and heated subsonic jet noise using large eddy simulations on unstructured grids. (English) Zbl 1410.76420

Summary: Jet noise remains the major contributor to airplane noise at take-off. In the past half-century of research, sound generation mechanisms in supersonic jets have been extensively characterized, while the sound sources in subsonic jets are still to be clearly identified. For the last two decades, large eddy simulations (LES) have become a major tool for investigating jet noise sources due to their ability to capture detailed information in turbulent flows and their moderate cost that allows industrial applications. However, many challenges still arise when dealing with complex nozzle geometries and heating effects in the jet core. In this paper, subsonic jets with or without nozzle geometry at Mach number of 0.9 and moderately high Reynolds numbers ranging from \(2 \times 10^{5}\) to \(1 \times 10^{6}\) are computed using LES, providing a base of validation for different nozzle configurations and operating conditions. In this work, the high-order unstructured LES solver AVBP is combined with Ffowcs Williams and Hawkings’ acoustic analogy on unstructured grids. The vortex pairing phenomenon is evidenced without properly triggering the turbulence in the jet at the nozzle exit. Hence, a non-geometrical tripping, where the firsts prism layers of the mesh at the nozzle wall are removed, is proposed and shown to be a successful method for triggering proper turbulence development in shear layers for the cases with nozzle. Moreover, it is more easily implemented because it does not require any geometrical modifications and it generates more natural turbulence than previous methods, leading the path to actual industrial dual-stream configurations. Both isothermal and heated jet flow cases are performed and validated with existing experimental data in terms of aerodynamics and acoustics, which demonstrates the capacity of an unstructured LES solver to correctly simulate both cold and heated jet noise phenomena.

MSC:

76Q05 Hydro- and aero-acoustics
76M10 Finite element methods applied to problems in fluid mechanics
76F65 Direct numerical and large eddy simulation of turbulence

Software:

AVBP
Full Text: DOI

References:

[1] Tam, C. K., Supersonic jet noise, Annu Rev Fluid Mech, 27, 1, 17-43, (1995)
[2] Tam, C. K., Jet noise: Since 1952, Theor Comput Fluid Dyn, 10, 1-4, 393-405, (1998) · Zbl 0900.76558
[3] Bogey, C.; Bailly, C.; Juvé, D., Noise investigation of a high subsonic, moderate Reynolds number jet using a compressible large eddy simulation, Theor Comput Fluid Dyn, 16, 4, 273-297, (2003) · Zbl 1051.76064
[4] Uzun, A.; Blaisdell, G. A.; Lyrintzis, A. S., Application of compact schemes to large eddy simulation of turbulent jets, J Sci Comput, 21, 3, 283-319, (2004) · Zbl 1071.76028
[5] Shur, M. L.; Spalart, P. R.; Strelets, M. K., Noise prediction for increasingly complex jets. part I: methods and tests, Int J Aeroacoust, 4, 3, 213-245, (2005)
[6] Shur, M. L.; Spalart, P. R.; Strelets, M. K., Noise prediction for increasingly complex jets. part II: applications, Int J Aeroacoust, 4, 3, 247-266, (2005)
[7] Bodony, D. J.; Lele, S. K., On using large-eddy simulation for the prediction of noise from cold and heated turbulent jets, Phys Fluids, 17, 8, 085103, (2005) · Zbl 1187.76056
[8] Huet, M.; Vuillot, F.; Rahier, G., Numerical study of the influence of temperature and micro-jets on subsonic jet noise, Proceedings of the fourteenth AIAA/CEAS Aeroacoustics conference, (2008), Vancouver, British Columbia, Canada
[9] Huet, M.; Fayard, B.; Rahier, G.; Vuillot, F., Numerical investigation of the micro-jets efficiency for jet noise reduction, Proceedings of the fifteenth AIAA/CEAS Aeroacostics conference, (2009), Miami, Florida. Paper 2009-3127
[10] Uzun, A.; Hussaini, M. Y., Simulation of noise generation in the near-nozzle region of a chevron nozzle jet, AIAA J, 47, 8, 1793-1810, (2009)
[11] Mendez, S.; Shoeybi, M.; Lele, S. K.; Moin, P., On the use of the ffowcs Williams-hawkings equation to predict far-field jet noise from large-eddy simulations, Int J Aeroacoust, 12, 1-2, 1-20, (2013)
[12] Bogey, C.; Marsden, O.; Bailly, C., Large-eddy simulation of the flow and acoustic fields of a Reynolds number 10^{5} subsonic jet with tripped exit boundary layers, Phys. Fluids, 23, 3, 035104, (2011)
[13] Brès, G. A.; Khalighi, Y.; Ham, F.; Lele, S. K., Unstructured large eddy simulation technology for aeroacoustics of complex jet flows, Proceedings of the conference on inter-noise, (2011)
[14] Brès, G. A.; Ham, F.; Nichols, J. W.; Lele, S. K., Nozzle wall modeling in unstructured large eddy simulations for hot supersonic jet predictions, Proceedings of the nineteenth AIAA/CEAS Aeroacoustics conference, (2013), Berlin, Germany. Paper 2013-2142
[15] Jordan, P.; Y., G.; C., V. J.; H., F., Jet exhaust aerodynamics & noise: final results from single point measurements, Technical report, (2002)
[16] Schönfeld, T.; Rudgyard, M., Steady and unsteady flow simulations using the hybrid flow solver AVBP, AIAA J, 37, 11, 1378-1385, (1999)
[17] Sanjosé, M.; Moreau, S.; Najab-Yazdi, A.; Fosso Pouangué, A., A comparison between garlerkin and compact schemes for jet noise simulations, Proceedings of the seventeenth AIAA/CEAS Aeroacoustics conference, (2011), Portland, Ogregon. Paper 2011-2833
[18] Fosso Pouangué, A.; Sanjosé, M.; Moreau, S., Jet noise simulation with realistic nozzle geometries using fully unstructured LES solver, Proceedings of the eighteenth AIAA/CEAS Aeroacoustics conference, (2012), Colorado Springs, Colorado. Paper 2012-2190
[19] Sanjosé, M.; Fosso Pouangué, A.; Moreau, S.; Wang, G. F.; Padois, T., Unstructured LES of the baseline EXEJET dual-stream jet, Proceedings of the twentieth AIAA/CEAS Aeroacoustics conference, (2014), Atlanta, Georgia. Paper 2014-3037
[20] Colonius, T.; Lele, S. K., Computational aeroacoustics: progress on nonlinear problems of sound generation, Prog Aerosp Sci, 40, 6, 345-416, (2004)
[21] Fosso Pouangué, A.; Deniau, H.; Lamarque, N.; Poinsot, T., Comparison of outflow boundary conditions for subsonic aeroacoustic simulations, Int J Numer Methods Fluids, 68, 10, 1207-1233, (2012) · Zbl 1426.76412
[22] Fosso Pouangué, A.; Sanjosé, M.; Moreau, S.; Daviller, G.; Deniau, H., Subsonic jet noise simulations using both structured and unstructured grids, AIAA J, 53, 1, 55-69, (2015)
[23] Fleury, V.; Bailly, C.; Jondeau, E.; Michard, M.; Juvé, D., Space-time correlations in two subsonic jets using dual particle image velocimetry measurements, AIAA J, 46, 10, 2498-2509, (2008)
[24] Barré, S.; Fleury, V.; Bogey, C.; Bailly, C.; Juvé, D., Experimental study of the properties of near-field and far-field jet noise, Proceedings of the twelfth AIAA/CEAS Aeroacoustics Conference, (2006), Cambridge, Massachusetts. Paper 2006-2649
[25] Tanna, H. K.; Dean, P. D.; Burrin, R. H., The generation and radiation of supersonic jet noise. volume 3. turbulent mixing noise data, Technical Report, (1976), DTIC Document
[26] Tanna, H. K., An experimental study of jet noise part I: turbulent mixing noise, J Sound Vib, 50, 3, 405-428, (1977)
[27] Bridges, J., Effect of heat on space-time correlations in jets, Proceedings of the twelfth AIAA/CEAS Aeroacoustics Conference, (2006), Cambridge, Massachusetts. Paper 2006-2534
[28] Bridges, J.; Wernet, M. P., Establishing consensus turbulence statistics for hot subsonic jets, Proceedings of the sixteenth AIAA/CEAS Aeroacoustics conference, (2010), Stockholm, Sweden. Paper 2010-3751
[29] Freund, J. B., Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9, J Fluid Mech, 438, 277-305, (2001) · Zbl 1013.76075
[30] Sandberg, R. D.; Tester, B. J., Application of a phased array technique to DNS-generated turbulent subsonic jet data, Proceedings of the eighteenth AIAA/CEAS Aeroacoustics conference, (2012), Colorado Springs, Colorado. Paper 2012-2118
[31] Bogey, C.; Bailly, C., Investigation of subsonic jet noise using LES: Mach and Reynolds number effects, Proceedings of the tenth AIAA/CEAS Aeroacoustics conference, (2004), Manchester, United Kingdom. Paper 2004-3023 · Zbl 1121.76386
[32] Bogey, C.; Bailly, C., A family of low dispersive and low dissipative explicit schemes for flow and noise computations, J Comput Phys, 194, 1, 194-214, (2004) · Zbl 1042.76044
[33] Zhao, W.; Frankel, S. H.; Mongeau, L., Large eddy simulations of sound radiation from subsonic turbulent jets, AIAA J, 39, 8, 1469-1477, (2001)
[34] Bodony, D.; Lele, S., Jet noise prediction of cold and hot subsonic jets using large-eddy simulation, Proceedings of the tenth AIAA/CEAS Aeroacoustics conference, (2004), Manchester, United Kingdom. Paper 2004-3022
[35] Lew, P.; Blaisdell, G. A.; Lyrintzis, A. S., Recent progress of hot jet aeroacoustics using 3-D large eddy simulation, Proceedings of the eleventh AIAA/CEAS Aeroacoustics conference, (2005), Monterey, California. Paper 2005-3084
[36] Biolchini, R.; Bailly, C.; Boussuge, J. F.; Fernando, R., Numerical study on the relation between hydrodynamic fluctuations and noise in hot jets at high Reynolds number, Proceedings of the twenty second AIAA/CEAS Aeroacoustics conference, (2016), Lyon, France. Paper 2016-3048
[37] Wolf, P.; Staffelbach, G.; Gicquel, L.; Poinsot, T., Massively parallel LES of azimuthal thermo-acoustic instabilities in annular gas turbines, C R Mécanique, 337, 6-7, 385-394, (2009)
[38] Giret, J. C.; Sengissen, A.; Moreau, S.; Sanjosé, M.; Jouhaud, J. C., Prediction of lagoon landing-gear noise using an unstructured LES solver, Proceedings of the ninteenth AIAA/CEAS Aeroacoustics conference, (2013), Berlin, Germany. Paper 2013-2113
[39] Giret, J. C.; Sengissen, A.; Moreau, S.; Sanjosé, M.; Jouhaud, J. C., Noise source analysis of a rod-airfoil configuration using unstructured large-eddy simulation, AIAA J, 53, 4, 1062-1077, (2014)
[40] Salas, P.; Fauquembergue, G.; Moreau, S., Direct noise simulation of a canonical high lift device and comparison with an analytical model, J Acoust Soc Am, 140, 3, 2091-2100, (2016)
[41] Papadogiannis, D.; Wang, G. F.; Moreau, S.; Duchaine, F.; Gicquel, L.; Nicoud, F., Assessment of the indirect combustion noise generated in a transonic high-pressure turbine stage, J Eng Gas Turbine Power, 138, 4, 041503, (2016)
[42] Quartapelle, L.; Selmin, V., High-order Taylor–Galerkin methods for nonlinear multidimensional problems, Finite Elem Fluids, 76, 90, 46, (1993) · Zbl 0875.76250
[43] Donea, J., A Taylor-Galerkin method for convective transport problems, Int J Numer Methods Eng, 20, 1, 101-119, (1984) · Zbl 0524.65071
[44] Colin, O.; Rudgyard, M., Development of high-order Taylor-Galerkin schemes for LES, J Comput Phys, 162, 2, 338-371, (2000) · Zbl 0982.76058
[45] Sanjosé, M., Evaluation de la méthode euler-euler pour la simulation aux grandes échelles des chambres à carburant liquide, (2009), Institut National Polytechnique de Toulouse, (Doctoral dissertation)
[46] Nicoud, F.; Ducros, F., Subgrid-scale stress modelling based on the square of the velocity gradient tensor, Flow Turbul Combust, 62, 3, 183-200, (1999) · Zbl 0980.76036
[47] White F.M., Corfield I. Viscous fluid flow; vol. 3. McGraw-Hill New York; 2006.; White F.M., Corfield I. Viscous fluid flow; vol. 3. McGraw-Hill New York; 2006.
[48] Poinsot, T.; Lele, S. K., Boundary conditions for direct simulations of compressible viscous flows, J Comput Phys, 101, 1, 104-129, (1992) · Zbl 0766.76084
[49] Granet, V.; Vermorel, O.; Léonard, T.; Gicquel, L.; Poinsot, T., Comparison of nonreflecting outlet boundary conditions for compressible solvers on unstructured grids, AIAA J, 48, 10, 2348-2364, (2010)
[50] Selle, L.; Nicoud, F.; Poinsot, T., Actual impedance of nonreflecting boundary conditions: implications for computation of resonators, AIAA J, 42, 5, 958-964, (2004)
[51] Bodony, D. J.; Lele, S. K., Current status of jet noise predictions using large-eddy simulation, AIAA J, 46, 2, 364-380, (2008)
[52] Bogey, C.; Marsden, O.; Bailly, C., On the spectra of nozzle-exit velocity disturbances in initially nominally turbulent, transitional jets, Phys Fluids, 23, 9, 091702, (2011)
[53] Bogey, C.; Marsden, O., Identification of the effects of the nozzle-exit boundary-layer thickness and its corresponding Reynolds number in initially highly disturbed subsonic jets, Phys Fluids, 25, 5, 055106, (2013)
[54] Farassat, F.; Succi, G. P., The prediction of helicopter rotor discrete frequency noise, Proceedings of the thirty eighth American helicopter society annual forum, (1982), Anaheim, California. A82-40505 20-01
[55] Casalino, D., An advanced time approach for acoustic analogy predictions, J Sound Vib, 261, 4, 583-612, (2003)
[56] Fosso Pouangué A, Sanjosé M, Moreau S. Dual-stream jet noise simulations with realistic nozzle geometries using a fully unstructured LES solver. In: Proceedings of the twentieth AIAA/CEAS Aeroacoustics conference, 2014, Atlanta, Georgia. Paper 2014-2756.; Fosso Pouangué A, Sanjosé M, Moreau S. Dual-stream jet noise simulations with realistic nozzle geometries using a fully unstructured LES solver. In: Proceedings of the twentieth AIAA/CEAS Aeroacoustics conference, 2014, Atlanta, Georgia. Paper 2014-2756.
[57] Salas P, Moreau S. Aeroacoustic simulations of a simplified high-lift device accounting for installations effects. In: Proceedings of the twenty first AIAA/CEAS Aeroacoustics conference, 2015, Dallas, Texas. Paper 2015-2686.; Salas P, Moreau S. Aeroacoustic simulations of a simplified high-lift device accounting for installations effects. In: Proceedings of the twenty first AIAA/CEAS Aeroacoustics conference, 2015, Dallas, Texas. Paper 2015-2686.
[58] Huet M. Influence of boundary layers resolution on heated, subsonic, high Reynolds number jet flow and noise. In: Proceedings of the nineteenth AIAA/CEAS Aeroacoustics conference, 2013, Berlin, Germany. Paper 2013-2141.; Huet M. Influence of boundary layers resolution on heated, subsonic, high Reynolds number jet flow and noise. In: Proceedings of the nineteenth AIAA/CEAS Aeroacoustics conference, 2013, Berlin, Germany. Paper 2013-2141.
[59] Lorteau, M.; Cléro, F.; Vuillot, F., Analysis of noise radiation mechanisms in hot subsonic jet from a validated large eddy simulation solution, Phys Fluids, 27, 7, 075108, (2015)
[60] Bogey, C.; Bailly, C., Effects of inflow conditions and forcing on subsonic jet flows and noise, AIAA J, 43, 5, 1000-1007, (2005)
[61] Zaman, K. B.M. Q., Flow field and near and far sound field of a subsonic jet, J Sound Vib, 106, 1, 1-16, (1986)
[62] Zaman, K. B.M. Q., Effect of initial condition on subsonic jet noise, AIAA J, 23, 9, 1370-1373, (1985)
[63] Zaman, K. B.M. Q., Effect of initial boundary-layer state on subsonic jet noise, AIAA J, 50, 8, 1784-1795, (2012)
[64] Bogey C, Marsden O, Bailly C. A computational study of the effects of nozzle-exit turbulence level on the flow and acoustic fields of a subsonic jet. In: Proceedings of the seventeenth AIAA/CEAS Aeroacoustics conference, 2011, Portland, Oregon. Paper 2011-2837.; Bogey C, Marsden O, Bailly C. A computational study of the effects of nozzle-exit turbulence level on the flow and acoustic fields of a subsonic jet. In: Proceedings of the seventeenth AIAA/CEAS Aeroacoustics conference, 2011, Portland, Oregon. Paper 2011-2837.
[65] Bogey, C.; Marsden, O.; Bailly, C., Influence of initial turbulence level on the flow and sound fields of a subsonic jet at a diameter-based Reynolds number of 10^{5}, J Fluid Mech, 701, 352-385, (2012) · Zbl 1248.76125
[66] Gutmark, E.; Ho, C. M., Preferred modes and the spreading rates of jets, Phys Fluids, 26, 10, 2932-2938, (1983)
[67] Corrsin, S.; Uberoi, M. S., Further experiments on the flow and heat transfer in a heated turbulent air jet, Technical Report, (1950), NACA, Report 998
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.