×

Numerical solution of various cases of Cauchy type singular integral equation. (English) Zbl 1410.65505

Summary: In this paper, a robust but very simple numerical method is developed to solve various cases of Cauchy type singular integral equation. For this, first Bernstein polynomials are defined which are used for approximation of solution of the given singular integral equation. Then numerical method is introduced by using Bernstein polynomials. This ultimately leads to solution of a system of linear algebraic equations. Examples are illustrated to demonstrate simplicity of proposed method. Results are also compared with those present in literature to claim better efficiency of the method introduced.

MSC:

65R20 Numerical methods for integral equations
45E05 Integral equations with kernels of Cauchy type
Full Text: DOI

References:

[1] Ladopoulos, E. G., Singular integral equations, linear and non-linear theory and its applications in science and engineering, (2000), Springer-Verlag Berlin, New York, pp. 173-185 · Zbl 0963.65118
[2] Erdogan, F.; Gupta, G. D.; Cook, T. S., Numerical solution of singular integral equations, (Sih, G. C., Mechanics of Fracture I, Methods of Analysis and Solutions to Crack Problems, (1973), Noordhoff International Publishing Leyden, The Netherlands), 368-425 · Zbl 0245.00013
[3] Golberg, M. A., Introduction to the numerical solution of Cauchy singular integral equations, (Golberg, M. A., Numerical solution of integral equations, (1990), Plenum Press New York), 183-308 · Zbl 0735.65092
[4] Lifanov, I. K., Singular integral equation and discrete vortices, (1996), VSO The Netherlands · Zbl 0871.65110
[5] Kim, S., Numerical solutions of Cauchy singular integral equations using generalized inverses, Comput. Math. Appl., 38, 183-195, (1999) · Zbl 0940.65154
[6] Mohankumar, N.; Natarajan, A., On the numerical solution of Cauchy singular integral equations in neutron transport, Ann. Nucl. Energy, 35, 1800-1804, (2008)
[7] Bhattacharya, S.; Mandal, B. N., Numerical solution of a singular integro-differential equation, Appl. Math. Comput., 195, 346-350, (2008) · Zbl 1130.65130
[8] Mandal, B. N.; Bhattacharya, S., Numerical solution of some classes of integral equations using Bernstein polynomials, Appl. Math. Comput., 190, 1707-1716, (2007) · Zbl 1122.65416
[9] Pandey, R. K.; Singh, O. P.; Singh, V. K., Numerical solution of system of Volterra integral equations using Bernstein polynomials, Int. J. Nonlin. Sci. Num., 10, 691-695, (2009)
[10] Pandey, R. K.; Mandal, B. N., Numerical solution of a system of generalized Abel integral equations using Bernstein polynomials, J. Adv. Res. Sci. Comp., 2, 44-53, (2010)
[11] Singh, O. P.; Singh, V. K.; Pandey, R. K., A stable numerical inversion of abel’s integral equation using almost Bernstein operational matrix, J. Quant. Spectrosc. Radiat. Transf., 111, 245-252, (2010)
[12] Pandey, R. K.; Kumar, N., Solution of Lane-Emden type equations using Bernstein operational matrix of differentiation, New Astron., 17, 303-308, (2012)
[13] De Bonis, M. C.; Laurita, C., Nyström method for Cauchy singular integral equations with negative index, J. Comput. Appl. Math., 232, 523-538, (2009) · Zbl 1185.65232
[14] Eshkuvatov, Z. K.; Nik Long, N. M.A.; Abdulkawi, M., Approximate solution of singular integral equations of the first kind with Cauchy kernel, Appl. Math. Lett., 22, 651-657, (2009) · Zbl 1161.65370
[15] De Bonis, M. C.; Laurita, C., Numerical solution of systems of Cauchy singular integral equations with constant coefficients, Appl. Math. Comput., 219, 1391-1410, (2012) · Zbl 1291.65378
[16] Liu, D.; Zhang, X.; Wu, J., A collocation scheme for a certain Cauchy singular integral equation based on the superconvergence analysis, Appl. Math. Comput., 219, 5198-5209, (2013) · Zbl 1286.65185
[17] Panja, M. M.; Mandal, B. N., Solution of second kind integral equation with Cauchy type kernel using Daubechies scale function, J. Comput. Appl. Math., 241, 130-142, (2013) · Zbl 1258.65110
[18] Mandal, B. N.; Bera, G. H., Approximate solution of a class of singular integral equations of second kind, J. Comput. Appl. Math., 206, 189-195, (2007) · Zbl 1117.65172
[19] Gakhov, F. D., Boundary value problems, (1966), Addison-Wesley · Zbl 0141.08001
[20] Hansen, V. L., Functional analysis: entering Hilbert space, (2006), World Scientific Hackensack · Zbl 1118.46001
[21] Atkinson, K. E., A survey of numerical methods for the solution of Fredholm integral equations of the second kind, (1976), Society for Industrial and Applied Mathematics Philadelphia, Pennsylvania · Zbl 0353.65069
[22] Farouki, R. T.; Goodman, T. N.T., On the optimal stability of the Bernstein basis, Math. Comp., 65, 1553-1566, (1996) · Zbl 0853.65051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.