×

Border aggregation model. (English) Zbl 1410.60098

Summary: Start with a graph with a subset of vertices called the border. A particle released from the origin performs a random walk on the graph until it comes to the immediate neighbourhood of the border, at which point it joins this subset thus increasing the border by one point. Then a new particle is released from the origin and the process repeats until the origin becomes a part of the border itself. We are interested in the total number \(\xi\) of particles to be released by this final moment.
We show that this model covers the OK Corral model as well as the erosion model, and obtain distributions and bounds for \(\xi\) in cases where the graph is star graph, regular tree and a \(d\)-dimensional lattice.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B24 Interface problems; diffusion-limited aggregation arising in equilibrium statistical mechanics

References:

[1] Asselah, A. and Gaudillière, A. (2013). Sublogarithmic fluctuations for internal DLA. Ann. Probab.41 1160-1179. · Zbl 1274.60286 · doi:10.1214/11-AOP735
[2] Asselah, A. and Gaudillière, A. (2014). Lower bounds on fluctuations for internal DLA. Probab. Theory Related Fields158 39-53. · Zbl 1294.60115 · doi:10.1007/s00440-012-0476-6
[3] Asselah, A. and Rahmani, H. (2016). Fluctuations for internal DLA on the comb. Ann. Inst. Henri Poincaré Probab. Stat.52 58-83. · Zbl 1335.60179 · doi:10.1214/14-AIHP629
[4] Bhattacharya, R. N. and Ranga Rao, R. (1976). Normal Approximation and Asymptotic Expansions. Wiley, New York. · Zbl 0331.41023
[5] Billingsley, P. (1986). Probability and Measure, 2nd ed. Wiley, New York. · Zbl 0649.60001
[6] Davis, B. (1990). Reinforced random walk. Probab. Theory Related Fields84 203-229. · Zbl 0665.60077 · doi:10.1007/BF01197845
[7] den Hollander, F. (2000). Large Deviations. Fields Institute Monographs14. Amer. Math. Soc., Providence, RI.
[8] Doyle, P. and Snell, L. (1984). Random Walks and Electric Networks. Carus Mathematical Monographs22. Mathematical Association of America, Washington, DC. · Zbl 0583.60065
[9] Durrett, R. (2010). Probability: Theory and Examples, 4th ed. Cambridge Series in Statistical and Probabilistic Mathematics31. Cambridge Univ. Press, Cambridge. · Zbl 1202.60001
[10] Jerison, D., Levine, L. and Sheffield, S. (2013). Internal DLA in higher dimensions. Electron. J. Probab.18 No. 98, 14. · Zbl 1290.60051 · doi:10.1214/EJP.v18-3137
[11] Jerison, D., Levine, L. and Sheffield, S. (2014). Internal DLA and the Gaussian free field. Duke Math. J.163 267-308. · Zbl 1296.60113 · doi:10.1215/00127094-2430259
[12] Kesten, H. (1987). How long are the arms in DLA? J. Phys. A20 L29-L33.
[13] Kesten, H. (1987). Hitting probabilities of random walks on \(\mathbf{Z}^{d}\). Stochastic Process. Appl.25 165-184. · Zbl 0626.60067
[14] Kingman, J. F. C. (1999). Martingales in the OK Corral. Bull. Lond. Math. Soc.31 601-606. · Zbl 0933.60007 · doi:10.1112/S0024609399006098
[15] Kingman, J. F. C. and Volkov, S. E. (2003). Solution to the OK Corral model via decoupling of Friedman’s urn. J. Theoret. Probab.16 267-276. · Zbl 1022.60007 · doi:10.1023/A:1022294908268
[16] Larsen, M. and Lyons, R. (1999). Coalescing particles on an interval. J. Theoret. Probab.12 201-205. · Zbl 0922.60061 · doi:10.1023/A:1021704912660
[17] Lawler, G. F. and Limic, V. (2010). Random Walk: A Modern Introduction. Cambridge Studies in Advanced Mathematics123. Cambridge Univ. Press, Cambridge. · Zbl 1210.60002
[18] Levine, L. and Peres, Y. (2007). Internal erosion and the exponent \(\frac{3}{4}\). Available at http://www.math.cornell.edu/ levine/erosion.pdf.
[19] Spitzer, F. (1976). Principles of Random Walk, 2nd ed. Graduate Texts in Mathematics34. Springer, New York. · Zbl 0359.60003
[20] Williams, D. and McIlroy, P. (1998). The OK Corral and the power of the law (a curious Poisson-kernel formula for a parabolic equation). Bull. Lond. Math. Soc.30 166-170. · Zbl 0933.60006 · doi:10.1112/S0024609397004062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.