×

New geometric aspects of Moser-Trudinger inequalities on Riemannian manifolds: the non-compact case. (English) Zbl 1410.53046

Summary: In the first part of the paper we investigate some geometric features of Moser-Trudinger inequalities on complete non-compact Riemannian manifolds. By exploring rearrangement arguments, isoperimetric estimates, and gluing local uniform estimates via Gromov’s covering lemma, we provide a Coulhon, Saloff-Coste and Varopoulos type characterization concerning the validity of Moser-Trudinger inequalities on complete non-compact \(n\)-dimensional Riemannian manifolds (\(n \geq 2\)) with Ricci curvature bounded from below. Some sharp consequences are also presented both for non-negatively and non-positively curved Riemannian manifolds, respectively. In the second part, by combining variational arguments and a Lions type symmetrization-compactness principle, we guarantee the existence of a non-zero isometry-invariant solution for an elliptic problem involving the \(n\)-Laplace-Beltrami operator and a critical nonlinearity on \(n\)-dimensional homogeneous Hadamard manifolds. Our results complement in several directions those of Y. Yang [ibid. 263, No. 7, 1894–1938 (2012; Zbl 1256.53034)].

MSC:

53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
58J60 Relations of PDEs with special manifold structures (Riemannian, Finsler, etc.)

Citations:

Zbl 1256.53034

References:

[1] Adams, D., A sharp inequality of J. Moser for higher order derivatives, Ann. of Math., 128, 385-398 (1988) · Zbl 0672.31008
[2] Adimurthi; Druet, O., Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality, Comm. Partial Differential Equations, 29, 1-2, 295-322 (2004) · Zbl 1076.46022
[3] Adimurthi; Yang, Y., An interpolation of Hardy inequality and Trudinger-Moser inequality in \(R^N\) and its applications, Int. Math. Res. Not. IMRN, 13, 2394-2426 (2010) · Zbl 1198.35012
[4] Aubin, T., Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geom., 11, 4, 573-598 (1976) · Zbl 0371.46011
[5] Balogh, Z.; Manfredi, J.; Tyson, J., Fundamental solution for the \(Q\)-Laplacian and sharp Moser-Trudinger inequality in Carnot groups, J. Funct. Anal., 204, 1, 35-49 (2003) · Zbl 1080.22003
[6] Beckenbach, E. F.; Radó, T., Subharmonic functions and surfaces of negative curvature, Trans. Amer. Math. Soc., 35, 3, 662-674 (1933) · Zbl 0007.13001
[7] Branson, T. P.; Fontana, L.; Morpurgo, C., Moser-Trudinger and Beckner-Onofri’s inequalities on the CR sphere, Ann. of Math. (2), 177, 1, 1-52 (2013) · Zbl 1334.35366
[8] Brezis, H.; Nirenberg, L., Remarks on finding critical points, Comm. Pure Appl. Math., 44, 8-9, 939-963 (1991) · Zbl 0751.58006
[9] Bridson, M. R.; Haefliger, A., Metric Spaces of Non-positive Curvature, Grundlehren der Mathematischen Wissenschaften, vol. 319 (1999), Springer-Verlag: Springer-Verlag Berlin · Zbl 0988.53001
[10] Carleson, L.; Chang, A., On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math., 110, 113-127 (1986) · Zbl 0619.58013
[11] Carron, G., Inégalités isopérimétriques sur les variétés Riemanniennes (1994), Université Joseph Fourier, Thèse de Doctorat
[12] Chavel, I., Riemannian Geometry. A Modern Introduction (2006) · Zbl 1099.53001
[13] Cherrier, P., Meilleures constantes dans des inégalités relatives aux espaces de, Sobolev. Bull. Sci. Math., 108, 225-262 (1984) · Zbl 0547.58017
[14] Cianchi, A.; Lutwak, E.; Yang, D.; Zhang, G., Affine Moser-Trudinger and Morrey-Sobolev inequalities, Calc. Var. Partial Differential Equations, 36, 419-436 (2009) · Zbl 1202.26029
[15] Cohn, W. S.; Lu, G., Best constants for Moser-Trudinger inequalities on the Heisenberg group, Indiana Univ. Math. J., 50, 4, 1567-1591 (2001) · Zbl 1019.43009
[16] Coulhon, Th.; Saloff-Coste, L., Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoam., 9, 2, 293-314 (1993) · Zbl 0782.53066
[17] Croke, C., Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. Éc. Norm. Supér. (4), 13, 419-435 (1980) · Zbl 0465.53032
[18] Croke, C., A sharp four-dimensional isoperimetric inequality, Comment. Math. Helv., 59, 2, 187-192 (1984) · Zbl 0552.53017
[19] Croke, C.; Karcher, H., Volumes of small balls on open manifolds: lower bounds and examples, Trans. Amer. Math. Soc., 309, 2, 753-762 (1988) · Zbl 0709.53033
[20] de Figueiredo, D. G.; Miyagaki, O. H.; Ruf, B., Elliptic equations in \(R^2\) with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3, 2, 139-153 (1995) · Zbl 0820.35060
[21] do Carmo, M. P.; Xia, C., Complete manifolds with non-negative Ricci curvature and the Caffarelli-Kohn-Nirenberg inequalities, Compos. Math., 140, 818-826 (2004) · Zbl 1066.53073
[22] do Ó, J. M., \(N\)-Laplacian equations in \(R^N\) with critical growth, Abstr. Appl. Anal., 2, 3-4, 301-315 (1997) · Zbl 0932.35076
[23] do Ó, J. M.; de Souza, M.; de Medeiros, E.; Severo, U., An improvement for the Trudinger-Moser inequality and applications, J. Differential Equations, 256, 4, 1317-1349 (2014) · Zbl 1283.49002
[24] do Ó, J. M.; Yang, Y., A quasi-linear elliptic equation with critical growth on compact Riemannian manifold without boundary, Ann. Global Anal. Geom., 38, 317-334 (2010) · Zbl 1201.58017
[25] Flucher, M., Extremal functions for the Trudinger-Moser inequality in 2 dimensions, Comment. Math. Helv., 67, 471-497 (1992) · Zbl 0763.58008
[26] Fontana, L., Sharp borderline Sobolev inequalities on compact Riemannian manifolds, Comment. Math. Helv., 68, 415-454 (1993) · Zbl 0844.58082
[27] Gallot, S.; Hulin, D.; Lafontaine, J., Riemannian Geometry, Universitext (2004), Springer-Verlag: Springer-Verlag Berlin · Zbl 0636.53001
[28] Hebey, E., Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, Courant Lecture Notes in Mathematics, vol. 5 (1999), New York University, Courant Institute of Mathematical Sciences/American Mathematical Society: New York University, Courant Institute of Mathematical Sciences/American Mathematical Society New York/Providence, RI
[29] Hebey, E.; Vaugon, M., Sobolev spaces in the presence of symmetries, J. Math. Pures Appl. (9), 76, 10, 859-881 (1997) · Zbl 0886.58003
[30] Ibrahim, S.; Masmoudi, N.; Nakanishi, K., Trudinger-Moser inequality on the whole plane with the exact growth condition, J. Eur. Math. Soc. (JEMS), 17, 4, 819-835 (2015) · Zbl 1317.35032
[31] Kleiner, B., An isoperimetric comparison theorem, Invent. Math., 108, 1, 37-47 (1992) · Zbl 0770.53031
[32] Kristály, A., Sharp Morrey-Sobolev inequalities on complete Riemannian manifolds, Potential Anal., 42, 1, 141-154 (2015) · Zbl 1321.58034
[33] Kristály, A.; Ohta, S., Caffarelli-Kohn-Nirenberg inequality on metric measure spaces with applications, Math. Ann., 357, 2, 711-726 (2013) · Zbl 1304.46032
[34] Lam, N.; Lu, G., Existence and multiplicity of solutions to equations of \(N\)-Laplacian type with critical exponential growth in \(R^N\), J. Funct. Anal., 262, 1132-1165 (2012) · Zbl 1236.35050
[35] Lam, N.; Lu, G., Sharp Moser-Trudinger inequality in the Heisenberg group at the critical case and applications, Adv. Math., 231, 6, 3259-3287 (2012) · Zbl 1278.42033
[36] Lang, S., Fundamentals of Differential Geometry (1998), Springer-Verlag
[37] Ledoux, M., On manifolds with non-negative Ricci curvature and Sobolev inequalities, Comm. Anal. Geom., 7, 2, 347-353 (1999) · Zbl 0953.53025
[38] Li, Y., Extremal functions for the Moser-Trudinger inequalities on compact Riemannian manifolds, Sci. China Ser. A, 48, 618-648 (2005) · Zbl 1100.53036
[39] Li, Y.; Ruf, B., A sharp Trudinger-Moser type inequality for unbounded domains in \(R^n\), Indiana Univ. Math. J., 57, 1, 451-480 (2008) · Zbl 1157.35032
[40] Lin, K. C., Extremal functions for Moser’s inequality, Trans. Amer. Math. Soc., 348, 2663-2671 (1996) · Zbl 0861.49001
[41] Lions, P.-L., Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal., 49, 3, 315-334 (1982) · Zbl 0501.46032
[42] Masmoudi, N.; Sani, F., Adams’ inequality with the exact growth condition in \(R^4\), Comm. Pure Appl. Math., 67, 8, 1307-1335 (2014) · Zbl 1309.46017
[43] Moser, J., A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20, 1077-1091 (1971) · Zbl 0203.43701
[44] Palais, R., The principle of symmetric criticality, Comm. Math. Phys., 69, 1, 19-30 (1979) · Zbl 0417.58007
[45] Ruf, B., A sharp Trudinger-Moser type inequality for unbounded domains in \(R^2\), J. Funct. Anal., 219, 340-367 (2005) · Zbl 1119.46033
[46] Ruf, B.; Sani, F., Sharp Adams-type inequalities in \(R^n\), Trans. Amer. Math. Soc., 365, 2, 645-670 (2013) · Zbl 1280.46024
[47] Skrzypczak, L.; Tintarev, C., A geometric criterion for compactness of invariant subspaces, Arch. Math., 101, 259-268 (2013) · Zbl 1287.46026
[48] Trudinger, N. S., On embeddings into Orlicz spaces and some applications, J. Math. Mech., 17, 473-484 (1967) · Zbl 0163.36402
[49] Varopoulos, N., Small time Gaussian estimates of heat diffusion kernels. I. The semigroup technique, Bull. Sci. Math. (2), 113, 253-277 (1989) · Zbl 0703.58052
[50] Weil, A., Sur les surfaces a courbure négative, C. R. Acad. Sci. Paris Sér I Math., 182, 1069-1071 (1926) · JFM 52.0712.05
[51] Yang, Q.; Su, D.; Kong, Y., Sharp Moser-Trudinger inequalities on Riemannian manifolds with negative curvature, Ann. Mat. Pura Appl. (4), 195, 2, 459-471 (2016) · Zbl 1355.46044
[52] Yang, Y., Trudinger-Moser inequalities on complete noncompact Riemannian manifolds, J. Funct. Anal., 263, 7, 1894-1938 (2012) · Zbl 1256.53034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.