×

An inverse obstacle problem for the wave equation in a finite time domain. (English) Zbl 1410.35283

Summary: We consider an inverse obstacle problem for the acoustic transient wave equation. More precisely, we wish to reconstruct an obstacle characterized by a Dirichlet boundary condition from lateral Cauchy data given on a subpart of the boundary of the domain and over a finite interval of time. We first give a proof of uniqueness for that problem and then propose an “exterior approach” based on a mixed formulation of quasi-reversibility and a level set method in order to actually solve the problem. Some 2D numerical experiments are provided to show that our approach is effective.

MSC:

35R25 Ill-posed problems for PDEs
35R30 Inverse problems for PDEs
35R35 Free boundary problems for PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

References:

[1] M. Bonnet, Topological sensitivity for 3D elastodynamic and acoustic inverse scattering in the time domain, Comput. Methods Appl. Mech. Engrg., 195, 5239-5254 (2006) · Zbl 1119.74026 · doi:10.1016/j.cma.2005.10.026
[2] L. Bourgeois; J. Dardé, A quasi-reversibility approach to solve the inverse obstacle problem, Inverse Problems and Imaging, 4, 351-377 (2010) · Zbl 1200.35318 · doi:10.3934/ipi.2010.4.351
[3] L. Bourgeois; J. Dardé, The “exterior approach” to solve the inverse obstacle problem for the Stokes system, Inverse Problems and Imaging, 8, 23-51 (2014) · Zbl 1284.35009 · doi:10.3934/ipi.2014.8.23
[4] L. Bourgeois; J. Dardé, The “exterior approach” applied to the inverse obstacle problem for the heat equation, SIAM Journal on Numerical Analysis, 55, 1820-1842 (2017) · Zbl 1516.35499 · doi:10.1137/16M1093872
[5] L. Bourgeois; A. Recoquillay, A mixed formulation of the Tikhonov regularization and its application to inverse PDE problems, M2AN, 52, 123-145 (2018) · Zbl 1397.35074 · doi:10.1051/m2an/2018008
[6] L. Bourgeois, A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace’s equation, Inverse Problems, 21, 1087-1104 (2005) · Zbl 1071.35120 · doi:10.1088/0266-5611/21/3/018
[7] H. Brezis, Analyse Fonctionnelle, Théorie et Applications, Masson, Paris, 1983. · Zbl 0511.46001
[8] Q. Chen, H. Haddar, A. Lechleiter and P. Monk, A sampling method for inverse scattering in the time domain, Inverse Problems, 26 (2010), 085001, 17pp. · Zbl 1197.35315
[9] J. Dardé, Quasi-reversibility and Level Set Methods Applied to Elliptic Inverse Problems, PhD Université Paris-Diderot - Paris Ⅶ, 2010.
[10] J. Dardé, Iterated quasi-reversibility method applied to elliptic and parabolic data completion problems, Inverse Problems and Imaging, 10, 379-407 (2016) · Zbl 1515.35338 · doi:10.3934/ipi.2016005
[11] A. Doubova; E. Fernández-Cara, Some geometric inverse problems for the linear wave equation, Inverse Problems and Imaging, 9, 371-393 (2015) · Zbl 1332.65140 · doi:10.3934/ipi.2015.9.371
[12] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Springer-Verlag, New York, 2004. · Zbl 1059.65103
[13] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equation of Second Order, Springer-Verlag, Berlin, 1983. · Zbl 0562.35001
[14] A. Henrot and M. Pierre, Variation et Optimisation de Formes, Une Analyse Géométrique, Springer, Paris, 2005. · Zbl 1098.49001
[15] V. Isakov, Inverse obstacle problems, Inverse Problems, 25 (2009), 123002, 18pp. · Zbl 1181.35334
[16] M. V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, VSP, Utrecht, 2004. · Zbl 1069.65106
[17] R. Lattès and J.-L. Lions, Méthode de Quasi-réversibilité et Applications, Dunod, Paris, 1967. · Zbl 0159.20803
[18] C. D. Lines; S. N. Chandler-Wilde, A time domain point source method for inverse scattering by rough surfaces, Computing, 75, 157-180 (2005) · Zbl 1079.78015 · doi:10.1007/s00607-004-0109-8
[19] J.-L. Lions, E. Magenes, Problèmes aux Limites non Homogènes et Applications, Vol. 2, Dunod, Paris, 1968. · Zbl 0165.10801
[20] J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation De Systèmes Distribués, Tome 1, Masson, Paris, 1988. · Zbl 0653.93002
[21] E. Lunéville and N. Salles, eXtended Library of Finite Elements in C++, http://uma.ensta-paristech.fr/soft/XLiFE++.
[22] L. Oksanen, Solving an inverse obstacle problem for the wave equation by using the boundary control method, Inverse Problems, 29 (2013), 035004, 12pp. · Zbl 1302.65217
[23] S. Y. Oudot, L. J. Guibas, J. Gao and Y. Wang, Geodesic delaunay triangulations in bounded planar domains, ACM Trans. Algorithms, 6 (2010), Art. 67, 47 pp. · Zbl 1300.65011
[24] L. Robbiano, Théorème d’unicité adapté au contrôle des solutions des problèmes hyperboliques, Communications in Partial Differential Equations, 16, 789-800 (1991) · Zbl 0735.35086 · doi:10.1080/03605309108820778
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.