×

Traveling waves in a delayed SIR epidemic model with nonlinear incidence. (English) Zbl 1410.35016

Summary: We establish the existence and non-existence of traveling wave solutions for a diffusive SIR model with a general nonlinear incidence. The existence proof is shown by introducing an auxiliary system, applying Schauder’s fixed point theorem and then a limiting argument. The nonexistence proof is obtained by two-sided Laplace transform when the speed is less than the critical velocity. Numerical simulations support the theoretical results. We also point out the effects of the delay and the diffusion rate of the infective individuals on the spreading speed.

MSC:

35C07 Traveling wave solutions
35Q92 PDEs in connection with biology, chemistry and other natural sciences
92D30 Epidemiology
35K40 Second-order parabolic systems
35K57 Reaction-diffusion equations
Full Text: DOI

References:

[1] Kermack, W. O.; Mckendrick, A. G., A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. London Ser. B, 115, 700-721, (1927) · JFM 53.0517.01
[2] Gan, Q.; Xu, R.; Yang, P., Travelling waves of a delayed SIRS epidemic model with spatial diffusion, Nonlinear Anal. Real Word Appl., 12, 52-68, (2011) · Zbl 1202.35046
[3] Li, J.; Zou, X., Modeling spatial spread of infectious diseases with a fixed latent period in a spatially continuous domain, Bull. Math. Biol., 71, 2048-2079, (2009) · Zbl 1180.92080
[4] Hosono, Y.; Ilyas, B., Existence of traveling waves with any positive speed for a diffusive epidemic model, Nonlinear World, 1, 277-290, (1994) · Zbl 0809.34061
[5] Hosono, Y.; Ilyas, B., Traveling waves for a simple diffusive epidemic model, Math. Models Methods Appl. Sci., 5, 935-966, (1995) · Zbl 0836.92023
[6] Fang, J.; Wei, J.; Zhao, X.-Q., Spatial dynamics of a nonlocal and time-delayed reaction diffusion system, J. Differ. Equ., 245, 2749-2770, (2008) · Zbl 1180.35536
[7] Wu, C.; Weng, P., Asymptotic speed of propagation and traveling wavefronts for a SIR epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 15, 867-892, (2011) · Zbl 1221.35097
[8] Weng, P.; Zhao, X.-Q., Spreading speed and traveling waves for a multi-type sis epidemic model, J. Differ. Equ., 229, 270-296, (2006) · Zbl 1126.35080
[9] Wang, Z. C.; Wu, J., Traveling waves of a diffusive kermack-mckendrick epidemic model with non-local delayed transmission, Proc. R. Soc. Lond. Ser. A, 466, 237-261, (2010) · Zbl 1195.35291
[10] Wang, Z. C.; Wu, J.; Liu, R. S., Traveling waves of the spread of Avian influenza, Proc. Am. Math. Soc., 140, 3931-3946, (2012) · Zbl 1275.35068
[11] Wang, X.; Wang, H.; Wu, J., Traveling waves of diffusive predator-prey systems: disease outbreak propagation, Discrete Contin. Dyn. Syst., 32, 3303-3324, (2012) · Zbl 1241.92069
[12] Yang, F. Y.; Li, Y.; Li, W. T.; Wang, Z. C., Traveling waves in a nonlocal dispersal kermack-mckendrick epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18, 1969-1993, (2013) · Zbl 1277.35107
[13] Li, W. T.; Lin, G.; Ma, C.; Yang, F. Y., Traveling waves of a nonlocal delayed SIR epidemic model without outbreak threshold, Discrete Cont. Dyn. Syst. B, 19, 467-484, (2014) · Zbl 1311.35051
[14] Zhang, T. R.; Wang, W. D., Existence of traveling wave solutions for influenza model with treatment, J. Math. Anal. Appl., 419, 469-495, (2014) · Zbl 1295.35175
[15] H. Wang, X. Wang, Traveling wave phenomena in a Kermack-Mckendrick SIR model, http://arxiv.org/abs/1402.4118. · Zbl 1341.92078
[16] Li, Y.; Li, W. T.; Yang, F. Y., Traveling waves for a nonlocal dispersal SIR model with delay and external supplies, Appl. Math. Comput., 247, 723-740, (2014) · Zbl 1338.92131
[17] Xu, Z., Traveling waves in a kermack-mckendrick epidemic model with diffusion and latent period, Nonlinear Anal., 111, 66-81, (2014) · Zbl 1338.92144
[18] Bai, Z.; Zhang, S., Traveling waves of a diffusive SIR epidemic model with a class of nonlinear incidence rates and distributed delay, Commun. Nonlinear Sci. Numer. Simulat., 22, 1370-1381, (2015) · Zbl 1331.92142
[19] Liu, W.; Hethcote, H. W.; Levin, S. A., Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25, 359-380, (1987) · Zbl 0621.92014
[20] Korobeinikov, A.; Maini, P. K., Nonlinear incidence and stability of infectious disease models, Math. Med. Biol., 22, 113-128, (2005) · Zbl 1076.92048
[21] Korobeinikov, A., Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission, Bull. Math. Biol., 68, 615-626, (2006) · Zbl 1334.92410
[22] Korobeinikov, A., Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69, 1871-1886, (2007) · Zbl 1298.92101
[23] Feng, Z.; Thieme, H. R., Endemic models with arbitrarily distributed periods of infection. I. fundamental properties of the model, SIAM J. Appl. Math., 61, 803-833, (2000) · Zbl 0991.92028
[24] Feng, Z.; Thieme, H. R., Endemic models with arbitrarily distributed periods of infection. II. fast disease dynamics and permanent recovery, SIAM J. Appl. Math., 61, 983-1012, (2000) · Zbl 1016.92035
[25] Huang, G.; Takeuchi, Y., Global analysis on delay epidemiological dynamic models with nonlinear incidence, J. Math. Biol., 63, 125-139, (2011) · Zbl 1230.92048
[26] Guo, H.; Li, M. Y.; Shuai, Z., Global dynamics of a general class of multistage models for infectious diseases, SIAM J. Appl. Math., 72, 261-279, (2012) · Zbl 1244.34075
[27] Shu, H.; Wang, L.; Watmough, J., Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses, SIAM J. Appl. Math., 73, 1280-1302, (2013) · Zbl 1272.92031
[28] Huang, G.; Takeuchi, Y.; Ma, W.; Wei, D., Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72, 1192-1207, (2010) · Zbl 1197.92040
[29] Zhen, J.; Ma, Z.; Han, M., Global stability of an sirs epidemic model with delays, Acta Math. Sci., 26, 291-306, (2006) · Zbl 1090.92044
[30] McCluskey, C. C., Global stability for an SIR epidemic model with delay and nonlinear incidence, Nonlinear Anal. Real Word Appl., 11, 3106-3109, (2010) · Zbl 1197.34166
[31] Xu, R.; Ma, Z., Global stability of a SIR epidemic model with nonlinear incidence rate and time delay, Nonlinear Anal. Real Word Appl., 10, 3175-3189, (2009) · Zbl 1183.34131
[32] Diekmann, O.; Heesterbeek, J. A.P., Mathematical Epidemiology of Infectious Diseases, (2000), Wiley Chichester · Zbl 0997.92505
[33] Thieme, H. R., Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70, 188-211, (2009) · Zbl 1191.47089
[34] Zeilder, E., Nonlinear Functional Analysis and its Applications: I, Fixed-Point Theorems, (1986), Springer New York · Zbl 0583.47050
[35] Carr, J.; Chmaj, A., Uniqueness of travelling waves for nonlocal monostable equations, Proc. Am. Math. Soc., 132, 2433-2439, (2004) · Zbl 1061.45003
[36] Diekmann, O.; Kaper, H., On the bounded solutions of a nonliear convolution equation, Nonlinear Anal. TMA, 2, 721-737, (1978) · Zbl 0433.92028
[37] Widder, D. V., The Laplace Transform, (1941), Princeton University Press Princeton · JFM 67.0384.01
[38] Li, W. T.; Ruan, S.; Wang, Z. C., On the diffusive nicholson’s blowflies equation with nonlocal delays, J. Nonlinear Sci., 17, 505-525, (2007) · Zbl 1134.35064
[39] Wang, Z. C.; Li, W. T.; Ruan, S., Traveling fronts in monostable equations with nonlocal delayed effects, J. Dynam. Differ. Equ., 20, 573-607, (2008) · Zbl 1141.35058
[40] S.-L. Wu, C.-H. Hsu, Y. Xiao, Global attractivity, spreading speeds and traveling waves of delayed nonlocal reaction-diffusion systems, J. Differ. Equ. doi:10.1016/j.jde.2014.10.009. · Zbl 1316.35155
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.