×

Thermodynamics of quantum-corrected Schwarzschild black hole surrounded by quintessence. (English) Zbl 1409.83113

Summary: Considering a quantum correction due to vacuum fluctuation in the Schwarzschild space-time with quintessence, the thermodynamic properties such as mass, temperature, heat capacity-as functions of entropy, are studied. Also the equation of state of the black hole is derived. Furthermore, the results of the quantum-corrected Schwarzschild black hole surrounded by quintessence field are compared with the conventional Schwarzschild black hole with quintessence and the quantum-corrected Schwarzschild black hole without quintessence.

MSC:

83C57 Black holes
80A10 Classical and relativistic thermodynamics
83F05 Relativistic cosmology
94A17 Measures of information, entropy
83C45 Quantization of the gravitational field

References:

[1] Ruiz-Lapuente, P.; Burkert, A.; Canal, R., Type Ia supernova scenarios and the Hubble sequence, Astrophys. J. Lett., 447, 2, L69 (1995)
[2] Riess, A. G.; Filippenko, A. V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P. M.; Gilliland, R. L.; Hogan, C. J.; Jha, S.; Kirshner, R. P.; Leibundgut, B.; Phillips, M. M.; Reiss, D.; Schmidt, B. P.; Schommer, R. A.; Smith, R. C.; Spyromilio, J.; Stubbs, C.; Suntzeff, N. B.; Tonry, J., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J., 116, 3, 1009 (1998)
[3] Riess, A. G.; Kirshner, R. P.; Schmidt, B. P.; Jha, S.; Challis, P.; Garnavich, P. M.; Esin, A. A.; Carpenter, C.; Grashius, R.; Schild, R. E.; Berlind, P. L.; Huchra, J. P.; Prosser, C. F.; Falco, E. E.; Benson, P. J.; Briceño, C.; Brown, W. R.; Caldwell, N.; Dell’Antonio, I. P.; Filippenko, A. V.; Goodman, A. A.; Grogin, N. A.; Groner, T.; Hughes, J. P.; Green, P. J.; Jansen, R. A.; Kleyna, J. T.; Luu, J. X.; Macri, L. M.; McLeod, B. A.; McLeod, K. K.; McNamara, B. R.; McLean, B.; Milone, A. A.E.; Mohr, J. J.; Moraru, D.; Peng, C.; Peters, J.; Prestwich, A. H.; Stanek, K. Z.; Szentgyorgyi, A.; Zhao, P., BVRI light curves for 22 type Ia supernovae, Astron. J., 117, 2, 707 (1999)
[4] Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R. A.; Nugent, P.; Castro, P. G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D. E.; Hook, I. M.; Kim, A. G.; Kim, M. Y.; Lee, J. C.; Nunes, N. J.; Pain, R.; Pennypacker, C. R.; Quimby, R.; Lidman, C.; Ellis, R. S.; Irwin, M.; McMahon, R. G.; Ruiz-Lapuente, P.; Walton, N.; Schaefer, B.; Boyle, B. J.; Filippenko, A. V.; Matheson, T.; Fruchter, A. S.; Panagia, N.; Newberg, H. J.M.; Couch, W. J.; Project, T. S.C., Measurements of Ω and Λ from 42 high-redshift supernovae, Astrophys. J., 517, 2, 565 (1999) · Zbl 1368.85002
[5] Miller, A. D.; Caldwell, R.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Nolta, M. R.; Page, L. A.; Puchalla, J.; Torbet, E.; Tran, H. T., A measurement of the angular power spectrum of the cosmic microwave background from l = 100 to 400, Astrophys. J. Lett., 524, 1, L1 (1999)
[6] Hanany, S.; Ade, P.; Balbi, A.; Bock, J.; Borrill, J.; Boscaleri, A.; de Bernardis, P.; Ferreira, P. G.; Hristov, V. V.; Jaffe, A. H.; Lange, A. E.; Lee, A. T.; Mauskopf, P. D.; Netterfield, C. B.; Oh, S.; Pascale, E.; Rabii, B.; Richards, P. L.; Smoot, G. F.; Stompor, R.; Winant, C. D.; Wu, J. H.P., Maxima-1: a measurement of the cosmic microwave background anisotropy on angular scales of 10′-5°, Astrophys. J. Lett., 545, 1, L5 (2000)
[7] Lamon, R.; Durrer, R., Constraining gravitino dark matter with the cosmic microwave background, Phys. Rev. D, 73, Article 023507 pp. (2006)
[8] Tegmark, M.; Strauss, M. A.; Blanton, M. R.; Abazajian, K.; Dodelson, S.; Sandvik, H.; Wang, X.; Weinberg, D. H.; Zehavi, I.; Bahcall, N. A.; Hoyle, F.; Schlegel, D.; Scoccimarro, R.; Vogeley, M. S.; Berlind, A.; Budavari, T.; Connolly, A.; Eisenstein, D. J.; Finkbeiner, D.; Frieman, J. A.; Gunn, J. E.; Hui, L.; Jain, B.; Johnston, D.; Kent, S.; Lin, H.; Nakajima, R.; Nichol, R. C.; Ostriker, J. P.; Pope, A.; Scranton, R.; Seljak, U.; Sheth, R. K.; Stebbins, A.; Szalay, A. S.; Szapudi, I.; Xu, Y.; Annis, J.; Brinkmann, J.; Burles, S.; Castander, F. J.; Csabai, I.; Loveday, J.; Doi, M.; Fukugita, M.; Gillespie, B.; Hennessy, G.; Hogg, D. W.; Ivezić, Ž.; Knapp, G. R.; Lamb, D. Q.; Lee, B. C.; Lupton, R. H.; McKay, T. A.; Kunszt, P.; Munn, J. A.; O’Connell, L.; Peoples, J.; Pier, J. R.; Richmond, M.; Rockosi, C.; Schneider, D. P.; Stoughton, C.; Tucker, D. L.; Vanden Berk, D. E.; Yanny, B.; York, D. G., Cosmological parameters from SDSS and WMAP, Phys. Rev. D, 69, Article 103501 pp. (2004) · Zbl 1405.83002
[9] Seljak, U.; Makarov, A.; McDonald, P.; Anderson, S. F.; Bahcall, N. A.; Brinkmann, J.; Burles, S.; Cen, R.; Doi, M.; Gunn, J. E.; Ivezić, Ž.; Kent, S.; Loveday, J.; Lupton, R. H.; Munn, J. A.; Nichol, R. C.; Ostriker, J. P.; Schlegel, D. J.; Schneider, D. P.; Tegmark, M.; Berk, D. E.V.; Weinberg, D. H.; York, D. G., Cosmological parameter analysis including SDSS Ly \(α\) forest and galaxy bias: constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy, Phys. Rev. D, 71, Article 103515 pp. (2005)
[10] Kitayama, T.; Suto, Y., Constraints on the fluctuation amplitude and density parameter from X-ray cluster number counts, Astrophys. J., 490, 2, 557 (1997)
[11] Wang, Y.; Tegmark, M., New dark energy constraints from supernovae, microwave background, and galaxy clustering, Phys. Rev. Lett., 92, Article 241302 pp. (2004)
[12] Olive, K. A.; Pospelov, M., Evolution of the fine structure constant driven by dark matter and the cosmological constant, Phys. Rev. D, 65, Article 085044 pp. (2002)
[13] Alcaniz, J. S., Testing dark energy beyond the cosmological constant barrier, Phys. Rev. D, 69, Article 083521 pp. (2004)
[14] Weinberg, S., The cosmological constant problem, Rev. Mod. Phys., 61, 1-23 (1989) · Zbl 1129.83361
[15] Ratra, B.; Peebles, P. J.E., Cosmological consequences of a rolling homogeneous scalar field, Phys. Rev. D, 37, 3406-3427 (1988)
[16] Carroll, S. M., Quintessence and the rest of the world: suppressing long-range interactions, Phys. Rev. Lett., 81, 3067-3070 (1998)
[17] Caldwell, R. R.; Dave, R.; Steinhardt, P. J., Cosmological imprint of an energy component with general equation of state, Phys. Rev. Lett., 80, 1582-1585 (1998) · Zbl 1371.83193
[18] Zlatev, I.; Wang, L.; Steinhardt, P. J., Quintessence, cosmic coincidence, and the cosmological constant, Phys. Rev. Lett., 82, 896-899 (1999)
[19] Sahni, V.; Wang, L., New cosmological model of quintessence and dark matter, Phys. Rev. D, 62, Article 103517 pp. (2000)
[20] Matos, T.; Arturo Ureña López, L., Further analysis of a cosmological model with quintessence and scalar dark matter, Phys. Rev. D, 63, Article 063506 pp. (2001)
[21] Capozziello, S.; Cardone, V. F.; Piedipalumbo, E.; Rubano, C., Dark energy exponential potential models as curvature quintessence, Class. Quantum Gravity, 23, 4, 1205 (2006) · Zbl 1091.83038
[22] Armendariz-Picon, C.; Mukhanov, V.; Steinhardt, P. J., Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration, Phys. Rev. Lett., 85, 4438-4441 (2000)
[23] Scherrer, R. J., Purely kinetic \(k\) essence as unified dark matter, Phys. Rev. Lett., 93, Article 011301 pp. (2004)
[24] Chimento, L. P.; Forte, M.; Lazkoz, R., Dark matter to dark energy transition in k-essence cosmologies, Mod. Phys. Lett. A, 20, 27, 2075-2082 (2005) · Zbl 1084.83038
[25] Khoury, J.; Weltman, A., Chameleon fields: awaiting surprises for tests of gravity in space, Phys. Rev. Lett., 93, Article 171104 pp. (2004)
[26] Padmanabhan, T., Accelerated expansion of the universe driven by tachyonic matter, Phys. Rev. D, 66, Article 021301 pp. (2002)
[27] Schulz, A. E.; White, M., Tensor to scalar ratio of phantom dark energy models, Phys. Rev. D, 64, Article 043514 pp. (2001)
[28] Caldwell, R., A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state, Phys. Lett. B, 545, 1, 23-29 (2002)
[29] Singh, P.; Sami, M.; Dadhich, N., Cosmological dynamics of a phantom field, Phys. Rev. D, 68, Article 023522 pp. (2003)
[30] Wei, H.; Cai, R.-G.; Zeng, D.-F., Hessence: a new view of quintom dark energy, Class. Quantum Gravity, 22, 16, 3189 (2005) · Zbl 1075.83574
[31] Feng, B.; Li, M.; Piao, Y.-S.; Zhang, X., Oscillating quintom and the recurrent universe, Phys. Lett. B, 634, 2, 101-105 (2006)
[32] Gasperini, M.; Piazza, F.; Veneziano, G., Quintessence as a runaway dilaton, Phys. Rev. D, 65, Article 023508 pp. (2001)
[33] Copeland, E. J.; Sami, M.; Tsujikawa, S., Dynamics of dark energy, Int. J. Mod. Phys. D, 15, 11, 1753-1935 (2006) · Zbl 1203.83061
[34] Avelino, P.; Losano, L.; Rodrigues, J., Quintessence and tachyon dark energy models with a constant equation of state parameter, Phys. Lett. B, 699, 1, 10-14 (2011)
[35] Nojiri, S.; Odintsov, S. D., Singularity of spherically-symmetric spacetime in quintessence/phantom dark energy universe, Phys. Lett. B, 676, 1, 94-98 (2009)
[36] Chongchitnan, S.; Efstathiou, G., Can we ever distinguish between quintessence and a cosmological constant?, Phys. Rev. D, 76, Article 043508 pp. (2007)
[37] Farooq, M. U.; Jamil, M.; Debnath, U., Dynamics of interacting phantom and quintessence dark energies, Astrophys. Space Sci., 334, 2, 243-248 (2011)
[38] Wang, P.; Wu, P.; Yu, H., A new extended quintessence, Eur. Phys. J. C, 72, 11, 2245 (2012)
[39] Liu, M.; Lu, J.; Gui, Y., The influence of free quintessence on gravitational frequency shift and deflection of light with 4D momentum, Eur. Phys. J. C, 59, 1, 107-116 (2009)
[40] Kiselev, V. V., Quintessence and black holes, Class. Quantum Gravity, 20, 6, 1187 (2003) · Zbl 1026.83036
[41] Chen, S.; Jing, J., Quasinormal modes of a black hole surrounded by quintessence, Class. Quantum Gravity, 22, 21, 4651 (2005) · Zbl 1086.83020
[42] Zhang, Y.; Gui, Y. X., Quasinormal modes of gravitational perturbation around a Schwarzschild black hole surrounded by quintessence, Class. Quantum Gravity, 23, 22, 6141 (2006) · Zbl 1133.83367
[43] Varghese, N.; Kuriakose, V. C., Quasinormal modes of Reissner-Nordström black hole surrounded by quintessence, Gen. Relativ. Gravit., 41, 6, 1249-1257 (2009) · Zbl 1178.83036
[44] Saleh, M.; Bouetou, B. T.; Kofane, T. C., Quasinormal modes and Hawking radiation of a Reissner-Nordström black hole surrounded by quintessence, Astrophys. Space Sci., 333, 2, 449-455 (2011) · Zbl 1237.83029
[45] Tharanath, R.; Varghese, N.; Kuriakose, V. C., Phase transition, quasinormal modes and Hawking radiation of Schwarzschild black hole in quintessence field, Mod. Phys. Lett. A, 29, 11, Article 1450057 pp. (2014)
[46] Chen, S.; Wang, B.; Su, R., Hawking radiation in a \(d\)-dimensional static spherically symmetric black hole surrounded by quintessence, Phys. Rev. D, 77, Article 124011 pp. (2008)
[47] Yi-Huan, W.; Zhong-Hui, C., Thermodynamic properties of a Reissner-Nordström quintessence black hole, Chin. Phys. Lett., 28, 10, Article 100403 pp. (2011)
[48] Thomas, B. B.; Saleh, M.; Kofane, T. C., Thermodynamics and phase transition of the Reissner-Nordström black hole surrounded by quintessence, Gen. Relativ. Gravit., 44, 9, 2181-2189 (2012) · Zbl 1252.83064
[49] Azreg-Aïnou, M.; Rodrigues, M. E., Thermodynamical, geometrical and Poincaré methods for charged black holes in presence of quintessence, J. High Energy Phys., 2013, 9, Article 146 pp. (2013)
[50] Li, G.-Q., Effects of dark energy on \(P - V\) criticality of charged ads black holes, Phys. Lett. B, 735, 256-260 (2014)
[51] Tharanath, R.; Kuriakose, V. C., Thermodynamics and spectroscopy of Schwarzschild black hole surrounded by quintessence, Mod. Phys. Lett. A, 28, 04, Article 1350003 pp. (2013) · Zbl 1273.83113
[52] Ghaderi, K.; Malakolkalami, B., Thermodynamics of the Schwarzschild and the Reissner-Nordström black holes with quintessence, Nucl. Phys. B, 903, 10-18 (2016) · Zbl 1332.83053
[53] Kazakov, D.; Solodukhin, S., On quantum deformation of the Schwarzschild solution, Nucl. Phys. B, 429, 1, 153-176 (1994) · Zbl 1009.83504
[54] Kim, W.; Kim, Y., Phase transition of quantum-corrected Schwarzschild black hole, Phys. Lett. B, 718, 2, 687-691 (2012)
[55] Saleh, M.; Bouetou, B. T.; Kofane, T. C., Quasinormal modes of a quantum-corrected Schwarzschild black hole: gravitational and Dirac perturbations, Astrophys. Space Sci., 361, 4, 137 (2016)
[56] Wang, C.; Gao, Y.; Ding, W.; Yu, Q., Quasinormal modes of a quantum-corrected Schwarzschild black hole for electromagnetic perturbation, J. Astrophys. Astron., 38, 4, 66 (2017)
[57] Ma, M.-S.; Zhao, R.; Ma, Y.-Q., Thermodynamic stability of black holes surrounded by quintessence, Gen. Relativ. Gravit., 49, 6, 79 (2017) · Zbl 1383.83067
[58] Bekenstein, J. D., Black holes and entropy, Phys. Rev. D, 7, 2333-2346 (1973) · Zbl 1369.83037
[59] Bardeen, J. M.; Carter, B.; Hawking, S. W., The four laws of black hole mechanics, Commun. Math. Phys., 31, 2, 161-170 (1973) · Zbl 1125.83309
[60] Hawking, S. W., Particle creation by black holes, Commun. Math. Phys., 43, 3, 199-220 (1975) · Zbl 1378.83040
[61] Dolan, B. P., The cosmological constant and black-hole thermodynamic potentials, Class. Quantum Gravity, 28, 12, Article 125020 pp. (2011) · Zbl 1219.83135
[62] Cvetič, M.; Gibbons, G. W.; Kubizňák, D.; Pope, C. N., Black hole enthalpy and an entropy inequality for the thermodynamic volume, Phys. Rev. D, 84, Article 024037 pp. (2011)
[63] Wald, R. M., Black hole entropy is the Noether charge, Phys. Rev. D, 48, R3427-R3431 (1993) · Zbl 0942.83512
[64] Vollick, D. N., Noether charge and black hole entropy in modified theories of gravity, Phys. Rev. D, 76, Article 124001 pp. (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.