×

Covariant Galilean versus Carrollian hydrodynamics from relativistic fluids. (English) Zbl 1409.83080

Summary: We provide the set of equations for non-relativistic fluid dynamics on arbitrary, possibly time-dependent spaces, in general coordinates. These equations are fully covariant under either local Galilean or local Carrollian transformations, and are obtained from standard relativistic hydrodynamics in the limit of infinite or vanishing velocity of light. All dissipative phenomena such as friction and heat conduction are included in our description. Part of our work consists in designing the appropriate coordinate frames for relativistic spacetimes, invariant under Galilean or Carrollian diffeomorphisms. The guide for the former is the dynamics of relativistic point particles, and leads to the Zermelo frame. For the latter, the relevant objects are relativistic instantonic space-filling branes in Randers-Papapetrou backgrounds. We apply our results for obtaining the general first-derivative-order Galilean fluid equations, in particular for incompressible fluids (Navier-Stokes equations) and further illustrate our findings with two applications: Galilean fluids in rotating frames or inflating surfaces and Carrollian conformal fluids on two-dimensional time-dependent geometries. The first is useful in atmospheric physics, while the dynamics emerging in the second is governed by the Robinson-Trautman equation, describing a Calabi flow on the surface, and known to appear when solving Einstein’s equations for algebraically special Ricci-flat or Einstein spacetimes.

MSC:

83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
76Y05 Quantum hydrodynamics and relativistic hydrodynamics

References:

[1] Landau, L. D.; Lifchitz, E. M., Physique Théorique, (1969), Moscow: MIR, Moscow
[2] Vinokur, M., A new formulation of the conservation equations of fluid dynamics, Technical Report NASA-TM-X-62415, (1974)
[3] Avis, L. M., A spacetime tensor formulation for continuum mechanics in general curvilinear, moving, and deforming coordinate systems, Technical Report NASA-TR-R-462, (1976)
[4] Aris, R., Vectors, Tensors, and the Basic Equations of Fluid Mechanics, (1989), New York: Dover, New York · Zbl 1158.76300
[5] Carlson, H. A.; Berkooz, G.; Lumley, J. L., Direct numerical simulation of flow in a channel with complex, time-dependent wall geometries: a pseudospectral method, J. Comput. Phys., 121, 155, (1995) · Zbl 0838.76056 · doi:10.1006/jcph.1995.1186
[6] Luo, H.; Bewley, T. R., On the contravariant form of the Navier-Stokes equations in time-dependent curvilinear coordinate systems, J. Comput. Phys., 199, 355, (2004) · Zbl 1054.76019 · doi:10.1016/j.jcp.2004.02.012
[7] Charron, M.; Zadra, A.; Girard, C., Four-dimensional tensor equations for a classical fluid in an external gravitational field, Q. J. R. Meteorol. Soc., 140, 908, (2014) · doi:10.1002/qj.2185
[8] Debus, J-D; Mendoza, M.; Succi, S.; Herrmann, H. J., Energy dissipation in flows through curved spaces, Sci. Rep., 7, 42350, (2017) · doi:10.1038/srep42350
[9] Rezzolla, L.; Zanotti, O., Relativistic Hydrodynamics, (2013), Oxford: Oxford University Press, Oxford · Zbl 1297.76002
[10] Jensen, K.; Karch, A., Revisiting non-relativistic limits, J. High Energy Phys., JHEP15(2015), 155, (2015) · Zbl 1388.83355 · doi:10.1007/JHEP04(2015)155
[11] Lévy-Leblond, J-M, Une nouvelle limite non-relativiste du groupe de Poincaré, A. Inst. Henri Poincaré, III, 1, (1965) · Zbl 0143.22601
[12] Duval, C.; Gibbons, G. W.; Horvathy, P. A.; Zhang, P. M., Carroll versus Newton and Galilei: two dual non-Einsteinian concepts of time, Class. Quantum Grav., 31, (2014) · Zbl 1295.83006 · doi:10.1088/0264-9381/31/8/085016
[13] Duval, C.; Gibbons, G. W.; Horvathy, P. A., Conformal Carroll groups and BMS symmetry, Class. Quantum Grav., 31, (2014) · Zbl 1291.83084 · doi:10.1088/0264-9381/31/9/092001
[14] Bergshoeff, E.; Gomis, J.; Longhi, G., Dynamics of Carroll particles, Class. Quantum Grav., 31, (2014) · Zbl 1303.83034 · doi:10.1088/0264-9381/31/20/205009
[15] Gibbons, G. W.; Herdeiro, C. A R.; Warnick, C. M.; Werner, M. C., Stationary metrics and optical Zermelo-Randers-Finsler geometry, Phys. Rev. D, 79, (2009) · doi:10.1103/PhysRevD.79.044022
[16] Ciambelli, L.; Marteau, C.; Petkou, A. C.; Petropoulos, P. M.; Siampos, K., Flat holography and Carrollian fluids, (2018) · Zbl 1395.81210
[17] Bhattacharyya, S.; Hubeny, V. E.; Minwalla, S.; Rangamani, M., Nonlinear fluid dynamics from gravity, J. High Energy Phys., JHEP02(2008), 045, (2008) · doi:10.1088/1126-6708/2008/02/045
[18] Haack, M.; Yarom, A., Nonlinear viscous hydrodynamics in various dimensions using AdS/CFT, J. High Energy Phys., JHEP10(2008), 063, (2008) · Zbl 1245.81172 · doi:10.1088/1126-6708/2008/10/063
[19] Bhattacharyya, S.; Loganayagam, R.; Mandal, I.; Minwalla, S.; Sharma, A., Conformal nonlinear fluid dynamics from gravity in arbitrary dimensions, J. High Energy Phys., JHEP12(2008), 116, (2008) · Zbl 1329.83103 · doi:10.1088/1126-6708/2008/12/116
[20] Hubeny, V. E.; Minwalla, S.; Rangamani, M., The fluid/gravity correspondence, (2011)
[21] Cartan, E., Sur les variétés à connexion affine, et la théorie de la relativité généralisée (première partie), Ann. École Norm., 41, 1, (1924) · JFM 50.0685.03
[22] Duval, C.; Horvathy, P. A., Non-relativistic conformal symmetries and Newton-Cartan structures, J. Phys. A: Math. Theor., 42, (2009) · Zbl 1180.37078 · doi:10.1088/1751-8113/42/46/465206
[23] Bekaert, X.; Morand, K., Connections and dynamical trajectories in generalised Newton-Cartan gravity I. An intrinsic view, J. Math. Phys., 57, (2016) · Zbl 1336.83013 · doi:10.1063/1.4937445
[24] Bekaert, X.; Morand, K., Connections and dynamical trajectories in generalised Newton-Cartan gravity II. An ambient perspective, (2015)
[25] Festuccia, G.; Hansen, D.; Hartong, J.; Obers, N. A., Torsional Newton-Cartan geometry from the Nœ ther procedure, Phys. Rev. D, 94, (2016) · doi:10.1103/PhysRevD.94.105023
[26] Romatschke, P., New developments in relativistic viscous hydrodynamics, Int. J. Mod. Phys. E, 19, 1, (2010) · doi:10.1142/S0218301310014613
[27] Kovtun, P., Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys. A: Math. Theor., 45, (2012) · Zbl 1348.83039 · doi:10.1088/1751-8113/45/47/473001
[28] Ciambelli, L.; Petkou, A. C.; Petropoulos, P. M.; Siampos, K., The Robinson-Trautman spacetime and its holographic fluid, PoS, CORFU2016, 076, (2016)
[29] Jensen, K., Aspects of hot Galilean field theory, J. High Energy Phys., JHEP04(2015), 123, (2015) · Zbl 1388.83354 · doi:10.1007/JHEP04(2015)123
[30] Geracie, M.; Prabhu, K.; Roberts, M. M., Fields and fluids on curved non-relativistic spacetimes, J. High Energy Phys., JHEP08(2015), 042, (2015) · Zbl 1388.83346 · doi:10.1007/JHEP08(2015)042
[31] Banerjee, N.; Dutta, S.; Jain, A.; Roychowdhury, D., Entropy current for non-relativistic fluid, J. High Energy Phys., JHEP08(2014), 037, (2014) · doi:10.1007/JHEP08(2014)037
[32] Penna, R. F., BMS_3 invariant fluid dynamics at null infinity, Class. Quantum Grav., 35, (2018) · Zbl 1386.83103 · doi:10.1088/1361-6382/aaa3aa
[33] de Boer, J.; Hartong, J.; Obers, N. A.; Sybesma, W.; Vandoren, S., Perfect fluids, (2017)
[34] Pedolský, J., Geophysical Fluid Dynamics, (1987), Berlin: Springer, Berlin · Zbl 0713.76005
[35] Regev, O.; Umurhan, O. M.; Yecko, P. A., Modern fluid dynamics for physics and astrophysics, Graduate Texts in Physics, (2016), Berlin: Springer, Berlin · Zbl 1339.76004
[36] Robinson, I.; Trautman, A.; Robinson, I.; Trautman, A., Spherical gravitational waves. Some spherical gravitational waves in general relativity, Phys. Rev. Lett.. Proc. R. Soc. A, 265, 463, (1962) · Zbl 0099.42902 · doi:10.1098/rspa.1962.0036
[37] Griffiths, J. B.; Podolský, J., Exact space-times in Einstein’s general relativity, Cambridge Monographs on Mathematical Physics, (2009), Cambridge: Cambridge University Press, Cambridge · Zbl 1184.83003
[38] Tod, K. P., Analogues of the past horizon in the Robinson-Trautman metrics, Class. Quantum Grav., 6, 1159, (1989) · Zbl 0671.53061 · doi:10.1088/0264-9381/6/8/015
[39] Duval, C.; Gibbons, G. W.; Horvathy, P. A., Conformal Carroll groups, J. Phys. A: Math. Theor., 47, (2014) · Zbl 1297.83028 · doi:10.1088/1751-8113/47/33/335204
[40] Hartong, J., Gauging the Carroll algebra and ultra-relativistic gravity, J. High Energy Phys., JHEP08(2015), 069, (2015) · Zbl 1388.83257 · doi:10.1007/JHEP08(2015)069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.