×

A \(C_2\)-equivariant analog of Mahowald’s Thom spectrum theorem. (English) Zbl 1409.55010

A classical theorem by M. Mahowald [Topology 16, 249–256 (1977; Zbl 0357.55020)] states that the Eilenberg-Mac Lane spectrum of \(\mathbb F_2\) can be obtained as the Thom spectrum of a certain double loop map \(\Omega^2 S^3 \to BO\). In the present paper, the authors prove a \(C_2\)-equivariant variant of this statement. They show that the Eilenberg-Mac Lane spectrum of the constant Mackey functor with value \(\mathbb F_2\) is equivalent as a \(C_2\)-spectrum to the Thom spectrum of a map \(\Omega^{\rho} S^{\rho + 1} \to B_{C_2}O\) where \(\rho\) is the regular representation. The strategy of proof is to compute that the map representing the Thom class induces an isomorphism in \(RO(C_2)\)-graded homology.

MSC:

55P91 Equivariant homotopy theory in algebraic topology
55S91 Equivariant operations and obstructions in algebraic topology

Citations:

Zbl 0357.55020

References:

[1] O. Antol\'n-Camarena and T. Barthel, A simple universal property of Thom ring spectra, ArXiv e-prints (2014).
[2] Atiyah, M. F., Bott periodicity and the index of elliptic operators, Quart. J. Math. Oxford Ser. (2), 19, 113-140 (1968) · Zbl 0159.53501 · doi:10.1093/qmath/19.1.113
[3] Blumberg, Andrew J.; Hill, Michael A., Operadic multiplications in equivariant spectra, norms, and transfers, Adv. Math., 285, 658-708 (2015) · Zbl 1329.55012 · doi:10.1016/j.aim.2015.07.013
[4] Greenlees, J. P. C.; May, J. P., Generalized Tate cohomology, Mem. Amer. Math. Soc., 113, 543, viii+178 pp. (1995) · Zbl 0876.55003 · doi:10.1090/memo/0543
[5] Guillou, Bertrand J.; May, J. Peter, Equivariant iterated loop space theory and permutative \(G\)-categories, Algebr. Geom. Topol., 17, 6, 3259-3339 (2017) · Zbl 1394.55008 · doi:10.2140/agt.2017.17.3259
[6] Michael A. Hill, On algebras over equivariant little disks, arXiv:1709.02005, 2017.
[7] Hu, Po; Kriz, Igor, Real-oriented homotopy theory and an analogue of the Adams-Novikov spectral sequence, Topology, 40, 2, 317-399 (2001) · Zbl 0967.55010 · doi:10.1016/S0040-9383(99)00065-8
[8] Hill, Michael A.; Meier, Lennart, The \(C_2\)-spectrum \({\rm Tmf}_1(3)\) and its invertible modules, Algebr. Geom. Topol., 17, 4, 1953-2011 (2017) · Zbl 1421.55002 · doi:10.2140/agt.2017.17.1953
[9] Lewis, L. G., Jr.; May, J. P.; Steinberger, M.; McClure, J. E., Equivariant stable homotopy theory, With contributions by J. E. McClure. Lecture Notes in Mathematics 1213, x+538 pp. (1986), Springer-Verlag, Berlin · Zbl 0611.55001 · doi:10.1007/BFb0075778
[10] Mahowald, Mark, A new infinite family in \({}_2\pi_*{}^s\), Topology, 16, 3, 249-256 (1977) · Zbl 0357.55020 · doi:10.1016/0040-9383(77)90005-2
[11] May, J. P., Equivariant homotopy and cohomology theory, With contributions by M. Cole, G. Comeza\~na, S. Costenoble, A. D. Elmendorf, J. P. C. Greenlees, L. G. Lewis, Jr., R. J. Piacenza, G. Triantafillou, and S. Waner. CBMS Regional Conference Series in Mathematics 91, xiv+366 pp. (1996), Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI · Zbl 0890.55001 · doi:10.1090/cbms/091
[12] Rourke, Colin; Sanderson, Brian, Equivariant configuration spaces, J. London Math. Soc. (2), 62, 2, 544-552 (2000) · Zbl 1024.55009 · doi:10.1112/S0024610700001241
[13] John Ullman, Tambara functors and commutative ring spectra, arXiv:1304.4912v2, 2013.
[14] Dylan Wilson, Power operations for \(\textH\mathbbF_2\) and a cellular construction of \(BPR \), arXiv:1611.06958v2, 2017.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.