×

Asynchronous output feedback dissipative control of Markovian jump systems with input time delay and quantized measurements. (English) Zbl 1408.93140

Summary: This paper considers dynamic output-feedback control for Markovian jump systems with input mode-dependent interval time delay and quantized measurements. The transitions of the considered system and the desired output feedback controllers are considered to be asynchronous. The transition probabilities of output feedback controllers are allowed to be known, uncertain, and unknown. The main purpose of this paper is to design an asynchronous output feedback controller for Markov jump systems so that the closed-loop system is stochastically stable and achieves strict \((Q, S, R) - \alpha\) dissipativity. A sufficient condition is developed using Lyapunov functional approach. The controller gains are derived by solving a set of linear matrix inequalities. A numerical example is provided to demonstrate the effectiveness of the developed techniques.

MSC:

93E15 Stochastic stability in control theory
93B52 Feedback control
60J75 Jump processes (MSC2010)
Full Text: DOI

References:

[1] Boukas, E. K., Stochastic Switching Systems: Analysis and Design (2006), Brikhauser: Brikhauser Boston · Zbl 1151.93028
[2] Zhang, L.; Zhu, Y.; Zheng, W. X., Synchronization and state estimation of a class of hierarchical hybrid neural networks with time-varying delays, IEEE Trans. Neural Netw. Learn. Syst., 27, 2, 459-470 (2016)
[3] Zhu, Y.; Zhang, L.; Zheng, W. X., Distributed \(H_\infty\) filtering for a class of discrete-time Markov jump Lur’e systems with redundant channels, IEEE Trans. Ind. Electron., 63, 3, 1876-1885 (2016)
[4] Xia, J.; Chen, G.; Sun, W., Extended dissipative analysis of generalized Markovian switching neural networks with two delay components, Neurocomputing, 260, 275-283 (2017)
[5] Huang, H.; Feng, G.; Chen, X., Stability and stabilization of Markovian jump systems with time delay via new Lyapunov functionals, IEEE Trans. Circuits Syst. Reg. Papers, 59, 10, 2413-2421 (2012) · Zbl 1468.93185
[6] Shen, H.; Li, F.; Xu, S.; Steeram, V., Slow state variables feedback stabilization for Semi-Markov jump systems with singular perturbations, IEEE Trans. Automat. Control (2017)
[7] Wang, J.; Liang, K.; Huang, X.; Wang, Z.; Shen, H., Dissipative fault-tolerant control for nonlinear singular perturbed systems with Markov jumping parameters based on slow state feedback, Appl. Math. Comput., 328, 247-262 (2018) · Zbl 1427.93197
[8] Shen, H.; Li, F.; Yan, H.; Karimi, H. R.; Lam, H. K., Finite-time event-triggered \(H_\infty\) control for T-S fuzzy Markov jump systems, IEEE Trans. Fuzzy Syst. (2017)
[9] Shen, M.; Fei, S., A constructive method to static output stabilization of Markov jump systems, Internat. J. Control, 88, 5, 990-1000 (2015) · Zbl 1316.93121
[10] Wu, Z.; Shi, P.; Su, H.; Chu, J., Asynchronous \(l_1 - l_\infty\) filtering for discrete-time stochastic Markov jump systems with randomly occurred sensor nonlinearities, Automatica, 50, 1, 180-186 (2014) · Zbl 1417.93317
[11] Wu, Z. G.; Dong, S.; Shi, P.; Su, H.; Huang, T., Reliable filtering of nonlinear Markovian jump systems: The continuous-time case, IEEE Trans. Syst. Man, Cybern. Syst. (2017)
[12] De Farias, D. P.; Geromel, J. C.; Do Val, J. B.R.; Costa, O. L.V., Output feedback control of Markov jump linear systems in continuous-time, IEEE Trans. Automat. Control, 45, 5, 944-949 (2000) · Zbl 0972.93074
[13] Li, L.; Ugrinovskii, V. A., On necessary and sufficient conditions for \(H_\infty\) output feedback control of Markov jump linear systems, IEEE Trans. Automat. Control, 52, 7, 1287-1292 (2007) · Zbl 1366.93158
[14] Shi, Y.; Yu, B., Output feedback stabilization of networked control with random delays modeled by Markov Chains, IEEE Trans. Automat. Control, 54, 7, 1668-1674 (2009) · Zbl 1367.93538
[15] Dragan, V.; Costa, E., Optimal stationary dynamic output-feedback controllers for discrete-time linear systems with Markovian jumping parameters and additive white noise perturbations, IEEE Trans. Automat. Control (2016) · Zbl 1359.93511
[16] Zhang, H.; Zhang, G.; Wang, J., \(H_\infty\) observer design for LPV systems with uncertain measurements on scheduling variables: application to an electric ground vehicle, IEEE/ASME Trans. Mechatronics, 21, 3, 1659-1670 (2016)
[17] Wu, Z.-G.; Dong, S.; Yu, H.; Li, C., Asynchronous dissipative control for fuzzy Markov jump systems, IEEE Trans. Cybern. (2017)
[18] Wu, Z.-G.; Shi, P.; Shu, Z.; Su, H.; Lu, R., Passivity-based asynchronous control for Markov jump systems, IEEE Trans. Autom. Control., 62, 4, 2020-2025 (2017) · Zbl 1366.93611
[19] Li, F.; Du, C.; Yang, C.; Gui, W., Passvity-based asynchronous sliding mode control for delayed singular Markovian jump systems, IEEE Trans. Autom. Control. (2017)
[20] Zhu, Y.; Zhong, Z.; Zheng, W. X.; Zhou, D., HMM-Based \(H_\infty\) filtering for discrete-time Markov jump LPV Systems over unreliable communication channels, IEEE Trans. Syst. Man, Cybern. Syst., 2017 (2017)
[21] Qiu, L.; Zhang, B.; Xu, G.; Pan, J.; Yao, F., Mixed \(H_2 H_\infty\) control of Markovian jump time delay systems with uncertain transition probabilities, Inform. Sci., 373, 539-556 (2016) · Zbl 1432.93088
[22] Kao, Y.; Xie, J.; Xiang, L.; Karimi, H. R., A sliding mode approach to robust stabilization of Markovian jump linear time-delay systems with generally incomplete transition rates, Nonlinear Anal. Hybrid Syst., 17, 70-80 (2015) · Zbl 1326.93111
[23] Shen, M.; Park, J. H., \(H_\infty\) filtering of Markov jump linear systems with general transition probabilities and output quantization, ISA Trans., 63, 204-210 (2016)
[24] Boukas, E. K., \(H_\infty\) control of discrete-time Markov jump systems with bounded transition probabilities, Optimal Control Appl. Methods, 30, 477-494 (2009)
[25] Xiong, J.; Lam, J.; Gao, H.; Ho, D. W.C., On robust stabilization of Markovian jump systems with uncertain switching probabilities, Automatica, 41, 897-903 (2005) · Zbl 1093.93026
[26] Karan, M.; Shi, P.; Kaya, C. Y., Transition probability bounds for the stochastic stability robustness of continuous and discrete-time Markovian jump linear systems, Automatica, 42, 2159-2168 (2006) · Zbl 1104.93056
[27] Zhang, L.; Boukas, E. K., Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities, Automatica, 45, 436-468 (2009) · Zbl 1158.93414
[28] Zhang, Z.; Boukas, E. K.; Lam, J., Analysis and synthesis of Markov jump linear systems with time-varying delays and partially known transition probabilities, IEEE Trans. Autom. Control., 53, 2458-2464 (2009) · Zbl 1367.93710
[29] Shen, M.; Yang, G., New analysis and synthesis conditions for continuous Markov jump linear systems with partly known transition probabilities, IET Control Theory Appl, 6, 2318-2325 (2012)
[30] Shen, M.; Park, J. H.; Ye, D., A separated approach to control of Markov jump nonlinear systems with general transition probabilities, IEEE Trans. Cybern., 46, 2010-2018 (2016)
[31] Shi, P.; Liu, M.; Zhang, L., Fault-tolerant sliding model-observer synthesis of Markovian jump systems using quantized measurements, IEEE Trans. Ind. Electron., 62, 9, 5910-5918 (2015)
[32] Li, F.; Shi, P.; Wu, L.; Basin, M. V.; Lim, C.-C., Quantized control design for cognitive radio networks modeled as nonlinear semi-Markovian jump systems, IEEE Trans. Ind. Electron., 62, 4, 2330-2340 (2015)
[33] Willems, J. C., Dissipative dynamical systems-part I: General theory, Arch. Ration. Mech. Anal., 45, 5, 321-351 (1972) · Zbl 0252.93002
[34] Willems, J. C., Dissipative dynamical systems: II linear systems with quadratic supply rates, Arch. Ration. Mech. Anal., 45, 352-393 (1972) · Zbl 0252.93003
[35] Su, X.; Shi, P.; Wu, L.; Basin, M. V., Reliable filtering with strict dispativity for T-S fuzzy time-delay systems, IEEE Trans. Cybern., 44, 12, 2470-2483 (2014)
[36] Zhang, X.-M.; Han, Q.-L., A decentralized event-triggered dissipative control scheme for systems with multiple sensors to sample the system outputs, IEEE Trans. Cybern. (2015)
[37] Shen, H.; Su, L.; Wu, Z.-G.; Park, J. H., Reliable dissipative control for Markov jump systems using an event-triggered sampling information scheme, Nonlinear Anal. Hybrid Syst., 23, 41-59 (2017) · Zbl 1377.93105
[38] Choi, H. D.; Ahn, C. K.; Shi, P.; Wu, L.; Lim, M. T., Dynamic output-feedback dissipative control for T-S fuzzy systems with time-varying input delay and output constraints, IEEE Trans. Fuzzy Syst. (2016)
[39] Park, P.; Lee, W.; Lee, S., Auxiliary function-based integral inequalities for quadratic functions and their application to time-delay systems, J. Franklin Inst., 352, 1378-1396 (2015) · Zbl 1395.93450
[40] Park, P.; Ko, J. W.; Jeong, C., Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47, 1, 235-238 (2011) · Zbl 1209.93076
[41] Petersen, I. R., A stabilization algorithm for a class of uncertain linear system, Systems Control Lett., 8, 4, 351-357 (1987) · Zbl 0618.93056
[42] Shen, H.; Park, J. H.; Zhang, L.; Wu, Z. G., Robust extended dissipative control for sampled-data Markov jump systems, Internat. J. Control, 87, 8, 1549-1564 (2015) · Zbl 1317.93171
[43] Park, Ju H.; Shen, H.; Chang, X. H.; Lee, T. H., Recent Advances in Control and Filtering of Dynamic Systems with Constrained Signals (2018), Springer: Springer Cham, Switzerland
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.