×

Existence theorems via duality for equilibrium problems with trifunctions. (English) Zbl 1408.90289

This paper deals with generalized monotonicity and pesudomonotonicity for trifunctions, and presents sufficient conditions for the equivalence between the primal and the dual problems. The main results consist of the extension of some known existence theorems for equilibrium problems with bifunctions to the case of trifunctions. It contains as a particular case the Browder-Minty theorem on variational inequalities governed by monotone operators and, on the other side, Ky Fan’s minimax theorem. The main results obtained are applied to the so-called mixed equilibrium problem given by a sum of trifunctions. As an application, the authors prove the existence of a saddle point for a monotone bifunction with convexity properties only in one of the arguments. Some applications for variational inequalities are also given.

MSC:

90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
Full Text: DOI

References:

[1] Showalter, Re, Monotone operators in Banach space and nonlinear partial differential equations, 49 (1997), Providence (RI): American Mathematical Society, Providence (RI) · Zbl 0870.35004
[2] Aubin, Jp, Optima and equilibria (1993), Berlin: Springer-Verlag, Berlin · Zbl 0781.90012
[3] Fan, K.; Shisha, O., Inequalities iii, A minimax inequality and applications, 103-113 (1972), New York (NY): Academic Press, New York (NY) · Zbl 0302.49019
[4] Naniewicz, Z.; Panagiotopoulos, Pd, Mathematical theory of hemivariational inequalities and applications (1995), New York (NY): Marcel Dekker, New York (NY)
[5] Tian, G., Generalizations of the FKKM theorem and the Ky Fan minimax inequality with applications to maximal elements, price equilibrium, and complementarity, J Math Anal Appl, 170, 457-471 (1992) · Zbl 0767.49007
[6] Zeidler, E., Nonlinear functional analysis and its applications II/B, Nonlinear monotone operators (1990), New York (NY): Springer, New York (NY) · Zbl 0684.47029
[7] Muu, L.; Oettli, W., Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal Theor, 18, 1159-1166 (1992) · Zbl 0773.90092
[8] Minty, Gj, Monotone (nonlinear) operators in Hilbert spaces, Duke Math J, 29, 341-346 (1962) · Zbl 0111.31202
[9] Browder, Fe, Multi-valued monotone nonlinear mappings, Trans Am Math Soc, 118, 338-351 (1965) · Zbl 0138.39903
[10] Belenkii, Vz; Volkonskii, Va, Iterative methods in game theory and programming (1974), Moscow: Nauka, Moscow
[11] Konnov, Iv; Schaible, S., Duality for equilibrium problems under generalized monotonicity, J Optim Theory Appl, 104, 395-408 (2000) · Zbl 1016.90066
[12] Chen, Yq, On semi-monotone operator theory and applications, J Math Anal Appl, 231, 177-192 (1999) · Zbl 0934.47031
[13] Leray, J.; Lions, Jl, Quelques résultats de Vi\u{s}ik sur les problèmes elliptiques non linéaires par les méthodes de Minty- Browder, Bull Soc Math France, 93, 97-107 (1965) · Zbl 0132.10502
[14] Maugeri, A.; Raciti, F., On existence theorems for monotone and nonmonotone variational inequalities, J Convex Anal, 16, 899-911 (2009) · Zbl 1192.47052
[15] Kalmoun, Em, On Ky Fan’s minimax inequalities, mixed equilibrium problems and hemivariational inequalities, J Ineq Pure Appl Math, 2, 1, 1-31 (2001) · Zbl 1065.90075
[16] Brézis, H.; Nirenberg, L.; Stampacchia, G., A remark on Ky Fan’s minimax principle, Boll Unione Mat Ital, 6, 293-300 (1972) · Zbl 0264.49013
[17] Inoan, D.; Kolumbán, J., On pseudomonotone set-valued mappings, Nonlinear Anal Theor, 68, 47-53 (2008) · Zbl 1130.47030
[18] Fakhar, M.; Zafarani, J., On generalized variational inequalities, J Global Optim, 43, 503-511 (2009) · Zbl 1173.49007
[19] Fan, K., A generalization of Tychonoff’s fixed point theorem, Math Ann, 142, 305-310 (1961) · Zbl 0093.36701
[20] Bianchi, M.; Pini, R., A note on equilibrium problems with properly quasimonotone bifunctions, J Global Optim, 20, 67-76 (2001) · Zbl 0985.90090
[21] Brézis, H., Equations et inéquations nonlinéaires dans les espaces vectoriels en dualité, Ann Inst Fourier, 18, 1, 115-175 (1968) · Zbl 0169.18602
[22] Blum, E.; Oettli, W., From optimization and variational inequalities to equilibrium problems, Math Student, 63, 123-145 (1994) · Zbl 0888.49007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.