×

Cutoff for the East process. (English) Zbl 1408.82007

Summary: The East process is a 1D kinetically constrained interacting particle system, introduced in the physics literature in the early 1990s to model liquid-glass transitions. Spectral gap estimates of D. Aldous and P. Diaconis [J. Stat. Phys. 107, No. 5–6, 945–975 (2002; Zbl 1006.60095)] imply that its mixing time on \(L\) sites has order \(L\). We complement that result and show cutoff with an \(O(\sqrt{L})\)-window.
The main ingredient is an analysis of the front of the process (its rightmost zero in the setup where zeros facilitate updates to their right). One expects the front to advance as a biased random walk, whose normal fluctuations would imply cutoff with an \(O(\sqrt{L})\)-window. The law of the process behind the front plays a crucial role: in [Stochastic Processes Appl. 123, No. 9, 3430–3465 (2013; Zbl 1291.60199)], O. Blondel showed that it converges to an invariant measure \(\nu\), on which very little is known. Here, we obtain quantitative bounds on the speed of convergence to \(\nu\), finding that it is exponentially fast. We then derive that the increments of the front behave as a stationary mixing sequence of random variables, and a Stein-method based argument of E. Bolthausen [Ann. Probab. 10, 1047–1050 (1982; Zbl 0496.60020)] implies a CLT for the location of the front, yielding the cutoff result.
Finally, we supplement these results by a study of analogous kinetically constrained models on trees, again establishing cutoff, yet this time with an \(O(1)\)-window.

MSC:

82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics

References:

[1] Aldous, D.: Random walks on finite groups and rapidly mixing Markov chains. Seminar on probability, XVII, pp. 243-297 (1983) · Zbl 0514.60067
[2] Aldous D., Diaconis P.: Shuffling cards and stopping times. Am. Math. Monthly 93, 333-348 (1986) · Zbl 0603.60006 · doi:10.2307/2323590
[3] Aldous D., Diaconis P.: The asymmetric one-dimensional constrained Ising model: rigorous results. J. Stat. Phys. 107(5-6), 945-975 (2002) · Zbl 1006.60095 · doi:10.1023/A:1015170205728
[4] Aldous, D., Fill, J.: Reversible Markov chains and random walks on graphs. In preparation, http://www.stat.berkeley.edu/ aldous/RWG/book.html · Zbl 0485.60006
[5] Blondel O.: Front progression for the East model. Stoch. Process. Appl. 123, 3430-3465 (2013) · Zbl 1291.60199 · doi:10.1016/j.spa.2013.04.014
[6] Bolthausen E.: On the central limit theorem for stationary mixing random fields. Ann. Probab. 10(4), 1047 (1982) · Zbl 0496.60020 · doi:10.1214/aop/1176993726
[7] Bolthausen E., Deuschel J.D., Zeitouni O.: Recursions and tightness for the maximum of the discrete, two dimensional Gaussian free field. Electron. Commun. Probab. 16, 114-119 (2011) · Zbl 1236.60039 · doi:10.1214/ECP.v16-1610
[8] Bramson, M., Zeitouni, O.: Tightness for the minimal displacement of branching random walk. J. Stat. Mech. Theory Exp. (7), P07010, 12 (2007) · Zbl 1456.60226
[9] Bramson M., Zeitouni O.: Tightness for a family of recursion equations. Ann. Probab. 37(2), 615-653 (2009) · Zbl 1169.60020 · doi:10.1214/08-AOP414
[10] Cancrini N., Martinelli F., Roberto C., Toninelli C.: Kinetically constrained spin models. Probab. Theory Relat. Fields 140(3-4), 459-504 (2008) · Zbl 1139.60343
[11] Chleboun P., Faggionato A., Martinelli F.: Time scale separation and dynamic heterogeneity in the low temperature East model. Common Math. Phys. 328(3), 955-993 (2014) · Zbl 1294.82026 · doi:10.1007/s00220-014-1985-1
[12] Cancrini, N., Martinelli, F., Roberto, C., Toninelli, C.: Mixing time of a kinetically constrained spin model on trees: power law scaling at criticality. Probab. Theory Relat. Fields (to appear) · Zbl 1321.60203
[13] Cancrini N., Martinelli F., Schonmann R., Toninelli C.: Facilitated oriented spin models: some non equilibrium results. J. Stat. Phys. 138(6), 1109-1123 (2010) · Zbl 1188.82048 · doi:10.1007/s10955-010-9923-x
[14] Diaconis P.: The cutoff phenomenon in finite Markov chains. Proc. Nat. Acad. Sci. USA 93(4), 1659-1664 (1996) · Zbl 0849.60070 · doi:10.1073/pnas.93.4.1659
[15] Diaconis P., Fill J.A.: Strong stationary times via a new form of duality. Ann. Probab. 18(4), 1483-1522 (1990) · Zbl 0723.60083 · doi:10.1214/aop/1176990628
[16] Diaconis P., Shahshahani M.: Generating a random permutation with random transpositions. Z. Wahrsch. Verw. Gebiete 57(2), 159-179 (1981) · Zbl 0485.60006 · doi:10.1007/BF00535487
[17] Dekking F.M., Host B.: Limit distributions for minimal displacement of branching random walks. Probab. Theory Relat. Fields 90(3), 403-426 (1991) · Zbl 0734.60074 · doi:10.1007/BF01193752
[18] Faggionato, A., Martinelli, F., Roberto, C., Toninelli, C.: The East model: recent results and new progresses. Markov Process. Relat. Fields (in press) · Zbl 1321.60208
[19] Fredrickson G.H., Andersen H.C.: Kinetic Ising Model of the Glass Transition. Phys. Rev. Lett. 53(13), 1244-1247 (1984) · doi:10.1103/PhysRevLett.53.1244
[20] Grimmett, G.: Percolation, 2nd ed. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 321. Springer, Berlin (1999) · Zbl 0603.60006
[21] Jäckle J., Eisinger S.: A hierarchically constrained kinetic Ising model. Zeitschrift fr Physik B Condensed Matter 84(1), 115-124 (1991) · Zbl 1102.82324 · doi:10.1007/BF01453764
[22] Levin D.A., Peres Y., Wilmer E.L.: Markov chains and mixing times, American Mathematical Society, Providence, RI (2009). (With a chapter by James G. Propp and David B. Wilson) · Zbl 1160.60001
[23] Martinelli F., Toninelli C.: Kinetically constrained spin models on trees. Ann. Appl. Probab. 23(5), 1721-2160 (2013) · Zbl 1284.60170 · doi:10.1214/12-AAP891
[24] Saloff-Coste, L.: Lectures on finite Markov chains. Lectures on probability theory and statistics (Saint-Flour, 1996), Lecture Notes in Math., vol. 1665, Springer, Berlin, pp. 301-413 (1997) · Zbl 0885.60061
[25] Stein, C.: A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. Proc. of the Sixth Berkeley Symp. Math. Statist. Prob. Univ. California Press, pp. 583-602 (1972) · Zbl 0278.60026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.