×

Robust chaos in 3-D piecewise linear maps. (English) Zbl 1408.37061

Summary: A chaotic attractor is called robust if there is no periodic window or any coexisting attractor in some open subset of the parameter space. Such a chaotic attractor cannot be destroyed by a small change in parameter values since a small change in the parameter value can only make small changes in the Lyapunov exponents. Earlier investigations have calculated the existence and the stability conditions of robust chaos in 1D and 2D piecewise linear maps. In this work, we demonstrate the occurrence of robust chaos in 3D piecewise linear maps and derive the conditions of its occurrence by analyzing the interplay between the stable and unstable manifolds.{
©2018 American Institute of Physics}

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37E05 Dynamical systems involving maps of the interval
Full Text: DOI

References:

[1] Barreto, E.; Hunt, B. R.; Grebogi, C.; Yorke, J. A., Phys. Rev. Lett., 78, 4561, (1997) · doi:10.1103/PhysRevLett.78.4561
[2] Andrecut, M.; Ali, M., Phys. Rev. E, 64, 025203, (2001) · doi:10.1103/PhysRevE.64.025203
[3] Banerjee, S.; Yorke, J. A.; Grebogi, C., Phys. Rev. Lett., 80, 3049, (1998) · Zbl 1122.37308 · doi:10.1103/PhysRevLett.80.3049
[4] Glendining, P., Eur. Phys. J., 226, 1721, (2017) · doi:10.1140/epjst/e2017-70058-2
[5] Elhadj, Z.; Sprott, J. C., Front. Phys. China, 3, 195, (2008) · doi:10.1007/s11467-008-0017-z
[6] Elhadj, Z.; Sprott, J. C., Robust Chaos and Its Applications, (2012), World Scientific · Zbl 1266.65202
[7] Potapov, A.; Ali, M., Phys. Lett. A, 277, 310, (2000) · Zbl 1167.82359 · doi:10.1016/S0375-9601(00)00726-X
[8] Dafilis, M. P.; Liley, D. T.; Cadusch, P. J., Chaos, 11, 474, (2001) · Zbl 0992.92008 · doi:10.1063/1.1394193
[9] Nagaraj, N.; Vaidya, P. G.; Bhat, K. G.
[10] Fu-Yan, S.; Shu-Tang, L.; Zong-Wang, L., Chin. Phys., 16, 3616, (2007) · doi:10.1088/1009-1963/16/12/011
[11] Oğraş, H.; Türk, M., J. Inf. Secur., 8, 23, (2016) · doi:10.4236/jis.2017.81003
[12] Venkatasubramanian, V.; Leung, H., 548-552, (2004), IEEE
[13] Shanmugam, S. K.; Leung, H., 1540-1545, (2003), IEEE
[14] Jallouli, O.; El Assad, S.; Chetto, M., 23-26, (2016), IEEE
[15] Tse, C.; Chan, W. C., Int. J. Circuit Theory Appl., 23, 217, (1995) · Zbl 0996.94537 · doi:10.1002/(ISSN)1097-007X
[16] De, S.; Dutta, P. S.; Banerjee, S.; Roy, A. R., Int. J. Bifurcat. Chaos, 21, 1617-1636, (2011) · Zbl 1248.37041 · doi:10.1142/S0218127411029318
[17] Patra, M.; Banerjee, S., Int. J. Bifurcat. Chaos, 27, 1730033, (2017) · Zbl 1380.37107 · doi:10.1142/S0218127417300336
[18] diBernardo, M., III-III, (2003), IEEE
[19] Roy, I.; Roy, A. R., Int. J. Bifurcat. Chaos, 18, 577-586, (2008) · Zbl 1143.37306 · doi:10.1142/S0218127408020495
[20] Simpson, D. J., SIAM Rev., 58, 177, (2016) · Zbl 1386.39022 · doi:10.1137/15M1006982
[21] De, S.; Dutta, P. S.; Banerjee, S., Phys. Lett. A, 376, 400, (2012) · Zbl 1255.37010 · doi:10.1016/j.physleta.2011.11.017
[22] Frouzakis, C. E.; Gardini, L.; Kevrekidis, I. G.; Millerioux, G.; Mira, C., Int. J. Bifurcat. Chaos, 7, 1167, (1997) · Zbl 0905.58016 · doi:10.1142/S0218127497000972
[23] Mira, C.; Fournier-Prunaret, D.; Gardini, L.; Kawakami, H.; Cathala, J., Int. J. Bifurcat. Chaos, 4, 343, (1994) · Zbl 0818.58032 · doi:10.1142/S0218127494000241
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.