×

Orbit space reduction and localizations. (English) Zbl 1408.34038

Summary: We review the familiar method of reducing a symmetric ordinary differential equation via invariants of the symmetry group. Working exclusively with polynomial invariants is problematic: Generator systems of the polynomial invariant algebra, as well as generator systems for the ideal of their relations, may be prohibitively large, which makes reduction unfeasible. In the present paper we propose an alternative approach which starts from a characterization of common invariant sets of all vector fields with a given symmetry group, and uses suitably chosen localizations. We prove that there exists a reduction to an algebraic variety of codimension at most two in its ambient space. Some examples illustrate the approach.

MSC:

34C20 Transformation and reduction of ordinary differential equations and systems, normal forms
34C14 Symmetries, invariants of ordinary differential equations
Full Text: DOI

References:

[1] Borel, A., Linear Algebraic Groups (1992), Springer-Verlag: Springer-Verlag New York, Berlin
[2] Brouwer, A. E.; Popoviciu, M., The invariants of the binary decimic, J. Symbolic Comput., 45, 837-843 (2010) · Zbl 1192.13005
[3] Chossat, P., The reduction of equivariant dynamics to the orbit space of compact group actions, Acta Appl. Math., 70, 71-94 (2002) · Zbl 0998.37012
[4] Cushman, R. H.; Bates, L., Global Aspects of Classical Integrable Systems (2015), Birkhäuser: Birkhäuser Boston · Zbl 1321.70001
[5] Derksen, H.; Kraft, H., Constructive invariant theory, (Algébre Non Commutative, Groupes Quantiques et Invariants (Reims 1995). Algébre Non Commutative, Groupes Quantiques et Invariants (Reims 1995), Semin. Congr., 2 (1997), Soc. Math., France: Soc. Math., France Paris), 221-244 · Zbl 0883.13003
[6] Duistermaat, J. J.; Kolk, J. A.C., Lie Groups (2000), Springer-Verlag: Springer-Verlag Berlin · Zbl 0955.22001
[7] Field, M. J., Equivariant dynamical systems, Trans. Amer. Math. Soc., 259, 185-205 (1980) · Zbl 0447.58029
[8] Grosshans, F. D., Localization and invariant theory, Adv. Math., 21, 50-60 (1976) · Zbl 0341.13001
[10] Grosshans, F. D.; Scheurle, J.; Walcher, S., Invariant sets forced by symmetry, J. Geom. Mech., 4, 281-296 (2012) · Zbl 1417.37113
[11] Hubert, E.; Kogan, I., Rational invariants of a group action. Construction and rewriting, J. Symbolic Comput., 42, 203-217 (2007) · Zbl 1121.13010
[12] Humphreys, J. E., Linear Algebraic Groups (1975), Springer-Verlag: Springer-Verlag New York · Zbl 0507.20017
[13] Kushnirenko, A. G., An analytic action of a semisimple Lie group in a neighborhood of a fixed point is equivalent to a linear one, Funct. Anal. Appl., 1, 273-274 (1967) · Zbl 0221.22016
[14] Lang, S., Algebra (2002), Springer: Springer New York · Zbl 0984.00001
[15] Luna, D., Fonctions differentibles invariantes sous l’operation d’un groupe reductif, Ann. Inst. Fourier (Grenoble), 26, 33-49 (1976) · Zbl 0315.20039
[16] Nagata, M., On the \(1 4^{th}\) problem of Hilbert, Amer. J. Math., 81, 766-772 (1959) · Zbl 0192.13801
[17] Panyushev, D. I., On covariants of reductive algebraic groups, Indag. Math. (N.S.), 13, 125-129 (2002) · Zbl 1040.20037
[18] Poénaru, V., (Singularités \(C^\infty\) en présence de symétrie. Singularités \(C^\infty\) en présence de symétrie, Lecture Notes in Mathematics, vol. 510 (1976), Springer-Verlag: Springer-Verlag Berlin, New York) · Zbl 0325.57008
[19] Popov, V. L.; Vinberg, E. B., Invariant theory, (Parshin, A. N.; Shafarevich, I. R., Algebraic Geometry IV.. Algebraic Geometry IV., Encyclopedia of Mathematical Sciences, vol. 55 (1994), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0783.14028
[20] Santoprete, M.; Scheurle, J.; Walcher, S., Motion in a symmetric potential on the hyperbolic plane, Canad. J. Math., 67, 450-480 (2015) · Zbl 1373.37134
[21] Schroeders, R., Symmetriereduktion polynomieller Vektorfelder (2017), RWTH Aachen, to be submitted
[22] Schwarz, G. W., Smooth functions invariant under the action of a compact Lie group, Topology, 14, 63-68 (1975) · Zbl 0297.57015
[23] Walcher, S., On differential equations in normal form, Math. Ann., 291, 293-314 (1991) · Zbl 0754.34032
[24] Walcher, S., Multi-parameter symmetries of first order ordinary differential equations, J. Lie Theory, 9, 249-269 (1999) · Zbl 0947.34020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.