×

Involutions of varieties and Rost’s degree formula. (English) Zbl 1408.14023

Let \(X\) be a smooth complete variety. The Segre number of \(X\) is defined as \(s_X= {\mathrm{deg}}\,c_{\mathrm{dim}X}(-T_X),\) where \(c_{\mathrm{dim}X}\) is the highest Chern class and \(T_X\) denotes the tangent bundle. The index \(n_X\) is the g.c.d. of the degrees of the closed points of \(X.\) The degree formula is the following relation in \({\mathbb Z}/2:\) \[ \frac{n_Y}{n_X}\cdot \frac{s_Y}{n_Y}={\deg}f \cdot \frac{s_X}{n_X} \,\, \mod 2, \] where \(f: Y\rightarrow X\) is a rational of smooth complete connected varieties and \(\deg f\) is defined to be zero when \(f\) is not dominant and the degree of the function field extension otherwise. One can prove the degree formula in various ways [A. Merkurjev, J. Reine Angew. Math. 565, 13–26 (2003; Zbl 1091.14006)], [M. Levine and F. Morel, Algebraic cobordism. Berlin: Springer (2007; Zbl 1188.14015)]. The author studies varieties with involution. He associates to each \(G\)-variety a cycle class \(\mathcal{S}_Y\) in the Chow group of its fixed locus. This class mod \(2\) is functorial and if one specializes to \(X\times X\) and the action of \(G\) by exchange, the class \(\mathcal{S}_{X\times X}\) can be identified with the total Segre class \(\mathrm{Sq}(X)\in \mathrm{CH}(X)\) of the tangent cone of \(X.\) The degree formula is then nothing other but functoriality of \(s_X\) of the component of degree zero of \(\mathrm{Sq}(X)\). It is worth noting that the proof given by the author works in arbitrary characteristic. Moreover the class \(\mathrm{Sq}(X)\) is expected to be the total homological Steenrod square of the fundamental class of \(X\).

MSC:

14C25 Algebraic cycles
14L30 Group actions on varieties or schemes (quotients)

References:

[1] P. Aluffi, Shadows of blow-up algebras, Tohoku Math. J. (2) 56 (2004), no. 4, 593-619. · Zbl 1061.14006
[2] N. Bourbaki, Éléments de mathématique. Algèbre commutative. Chapitre 10, Springer, Berlin 2007.
[3] R. Elman, N. A. Karpenko and A. S. Merkurjev, The algebraic and geometric theory of quadratic forms, American Mathematical Society, Providence 2008. · Zbl 1165.11042
[4] W. Fulton, Intersection theory, 2nd ed., Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin 1998. · Zbl 0885.14002
[5] A. Grothendieck, Éléments de géométrie algébrique. II: Étude globale élémentaire de quelques classes de morphismes, Publ. Math. Inst. Hautes Études Sci. 8 (1961), 1-222.
[6] A. Grothendieck, Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Séconde partie), Publ. Math. Inst. Hautes Études Sci. 24 (1965), 1-231. · Zbl 0135.39701
[7] A. Grothendieck, Séminaire de géométrie algébrique du Bois Marie 1960-61. Revêtements étales et groupe fondamental (SGA 1), Doc. Math. (Paris) 3, Société Mathématique de France, Paris 2003. · Zbl 1039.14001
[8] O. Haution, Integrality of the Chern character in small codimension, Adv. Math. 231 (2012), no. 2, 855-878. · Zbl 1260.14013
[9] O. Haution, Reduced Steenrod operations and resolution of singularities, J. K-Theory 9 (2012), no. 2, 269-290. · Zbl 1238.14006
[10] O. Haution, Degree formula for the Euler characteristic, Proc. Amer. Math. Soc. 141 (2013), no. 6, 1863-1869. · Zbl 1273.14024
[11] O. Haution, Invariants of upper motives, Doc. Math. 18 (2013), 1555-1572. · Zbl 1366.14013
[12] O. Haution, Detection by regular schemes in degree two, Algebr. Geom. 2 (2015), no. 1, 44-61. · Zbl 1322.14036
[13] D. W. Hoffmann, Isotropy of quadratic forms over the function field of a quadric, Math. Z. 220 (1995), no. 3, 461-476. · Zbl 0840.11017
[14] D. W. Hoffmann and A. Laghribi, Isotropy of quadratic forms over the function field of a quadric in characteristic 2, J. Algebra 295 (2006), no. 2, 362-386. · Zbl 1138.11012
[15] O. T. Izhboldin, Motivic equivalence of quadratic forms. II, Manuscripta Math. 102 (2000), no. 1, 41-52. · Zbl 0972.11019
[16] N. A. Karpenko, Canonical dimension, Proceedings of the international congress of mathematicians. II: Invited lectures (ICM 2010), World Scientific, Hackensack (2010), 146-161. · Zbl 1227.14043
[17] S. Kimura, Fractional intersection and bivariant theory, Comm. Algebra 20 (1992), no. 1, 285-302. · Zbl 0774.14004
[18] M.-A. Knus, A. S. Merkurjev, M. Rost and J.-P. Tignol, The book of involutions, American Mathematical Society, Providence 1998. · Zbl 0955.16001
[19] M. Levine and F. Morel, Algebraic cobordism, Springer Monogr. Math., Springer, Berlin 2007. · Zbl 1188.14015
[20] A. S. Merkurjev, Rost’s degree formula, Notes of mini-course in Lens (2001), .
[21] A. S. Merkurjev, Algebraic oriented cohomology theories, Algebraic number theory and algebraic geometry, Contemp. Math. 300, American Mathematical Society, Providence (2002), 171-193. · Zbl 1051.14021
[22] A. S. Merkurjev, Steenrod operations and degree formulas, J. reine angew. Math. 565 (2003), 13-26. · Zbl 1091.14006
[23] M. Rost, Norm varieties and algebraic cobordism, Proceedings of the international congress of mathematicians. II: Invited lectures (ICM 2002), Higher Education Press, Beijing (2002), 77-85. · Zbl 1042.19002
[24] M. Rost, On Frobenius, {{K}}-theory, and characteristic numbers, preprint (2008), .
[25] A. Vishik, Symmetric operations (in Russian), Tr. Mat. Inst. Steklova 246 (2004), 92-105; translation in Tr. Mat. Inst. Steklova 246 (2004), 79-92. · Zbl 1117.14007
[26] A. Vishik, Symmetric operations in algebraic cobordism, Adv. Math. 213 (2007), no. 2, 489-552. · Zbl 1129.14034
[27] V. Voevodsky, The Milnor conjecture, preprint (1996), .
[28] M. Zhykhovich, Décompositions motiviques des variétés de Severi-Brauer généralisées et isotropie des involutions unitaires, Ph.D. thesis, Université Pierre et Marie Curie, Paris 2012.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.