×

Intuitionistic fuzzy multi-criteria group decision making with an application to critical path selection. (English) Zbl 1407.91090

Summary: In this paper, we develop a new fuzzy multi-criteria group decision making method using triangular intuitionistic fuzzy numbers (TIFNs) for determining critical path in a critical path problem (CPP). The CPP considered here involves both quantitative and qualitative assessments of the decision makers on multiple conflicting criteria. The intuitionistic fuzzy numbers are introduced since they consider both preferences and non-preferences simultaneously and are thus capable of representing qualitatively evaluated information more effectively than fuzzy sets. The proposed method involves fuzzy evaluation based on the extended preference relation of TIFNs using \((\alpha ,\beta )\)-cuts considered for preferences and non-preferences, respectively. The preference intensity function based on the extended preference relation of TIFNs leads to the strength and weakness index scores of the possible paths on given criteria. Furthermore, we define the total performance score of each project path using its strength and weakness index scores. The path that has the highest score is selected as the best alternative in terms of its criticality for the entire project to finish as per the chosen criteria. A numerical illustration is provided to demonstrate working of the proposed methodology.

MSC:

91B06 Decision theory

Software:

MADM
Full Text: DOI

References:

[1] Aggarwal, A., Chandra, S., & Mehra, A. (2014). Solving matrix games with I-fuzzy payoffs: Pareto-optimal security strategies approach. Fuzzy Information and Engineering, 6, 167-192. · doi:10.1016/j.fiae.2014.08.003
[2] Ahuja, H. N., Dozzi, S. P., & Abourizk, S. M. (1994). Project management. New York: Wiley.
[3] Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20, 87-96. · Zbl 0631.03040 · doi:10.1016/S0165-0114(86)80034-3
[4] Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets. Heidelberg: Springer. · Zbl 0939.03057 · doi:10.1007/978-3-7908-1870-3
[5] Avraham, S. (1997). Project segmentation-a tool for project management. International Journal of Project Management, 15, 15-19. · doi:10.1016/S0263-7863(96)00017-8
[6] Boffey, T. B. (1982). Graph theory in operations research. Hong Kong: The Macmillan Press Ltd. · Zbl 0509.90053 · doi:10.1007/978-1-349-16675-6
[7] Chanas, S., & Zielinski, P. (2001). Critical path analysis in the network with fuzzy activity times. Fuzzy Sets and Systems, 122, 195-204. · Zbl 1015.90096 · doi:10.1016/S0165-0114(00)00076-2
[8] Chanas, S., & Zielinski, P. (2002). The computational complexity of the criticality problems in a network with interval activity times. European Journal of Operational Research, 136, 541-550. · Zbl 1008.90029 · doi:10.1016/S0377-2217(01)00048-0
[9] Chen, S. P. (2007). Analysis of critical paths in a project networkwith fuzzy activity times. European Journal of Operational Research, 183, 442-459. · Zbl 1128.90010 · doi:10.1016/j.ejor.2006.06.053
[10] Elizabeth, S., & Sujatha, L. (2015). Project scheduling method using triangular intuitionistic fuzzy numbers and triangular fuzzy number. Applied Mathematical Sciences, 9, 185-198. · doi:10.12988/ams.2015.410852
[11] Jayagowri, P., & Geetharamani, G. (2014). A critical path problem using intuitionistic trapezoidal fuzzy number. Applied Mathematical Statistics, 8, 2555-2562.
[12] Jayagowri, P., & Geetharamani, G. (2015). Using metric distance ranking method to find intuitionistic fuzzy critical path. Journal of Applied Mathematics, 2015(2015), 12. · Zbl 1435.90159
[13] Kaur, P., & Kumar, A. (2014). Linear programming approach for solving fuzzy critical path problems with fuzzy parameters. Applied Soft Computing, 21, 309-319. · doi:10.1016/j.asoc.2014.03.017
[14] Kelley, J. E. (1961). Critical path planning and scheduling mathematical basis. Operations Research, 9, 296-320. · Zbl 0098.12103 · doi:10.1287/opre.9.3.296
[15] Lee, H. S. (2005). A fuzzy multi-criteria decision making model for the selection of distribution center. Lecture Notes in Computer Science, 3612, 1290-1299. · doi:10.1007/11539902_164
[16] Liang, G. S., & Han, T. C. (2004). Fuzzy critical path for project network. Information and Management Sciences, 15, 29-40. · Zbl 1113.90074
[17] Linstone, H. A., & Turoff, M. (1975). The Delphi method: Techniques and applications. Massachusetts: Addison Wesley. · Zbl 0347.62081
[18] Mehlawat, M. K., & Gupta, P. (2016). A new fuzzy group multi-criteria decision making method with an application to the critical path selection. The International Journal of Advance Manufacturing Technology, 83, 1281-1296. · doi:10.1007/s00170-015-7610-4
[19] Mon, D. L., Cheng, C. H., & Lu, H. C. (1995). Application of fuzzy distribution on project management. Fuzzy Sets and Systems, 73, 227-234. · Zbl 0855.90056 · doi:10.1016/0165-0114(94)00309-U
[20] Nasution, S. H. (2002). Fuzzy critical path method. IEEE Transactions on Systems, Man, and Cybernetics, 24, 48-57. · doi:10.1109/21.259685
[21] Nehi, H. M. (2010). A new ranking method for intuitionistic fuzzy numbers. International Journal of Fuzzy Systems, 12, 80-86.
[22] Porchelvi, R. S., & Sudha, G. (2015). Critical path analysis in a project network using ranking method in intuitionistic fuzzy environment. International Journal of Advanced Research, 3, 14-20.
[23] Seikh, M. R., Pal, M., & Nayak, P. K. (2012). Application of triangular intuitionistic fuzzy numbers in bi-matrix games. International Journal of Pure and Applied Mathematics, 79, 235-247. · Zbl 1250.91010
[24] Shankar, N. R., Sireesha, V., & Rao, P. P. B. (2010). An analytical method for finding critical path in a fuzzy project network. International Journal of Contemporary Mathematical Sciences, 5, 953-962. · Zbl 1230.90049
[25] Slyeptsov, A. I., & Tyshchuk, T. A. (2003). Fuzzy temporal characteristics of operations for project management on the network models basis. European Journal of Operational Research, 147, 253-265. · Zbl 1037.90547 · doi:10.1016/S0377-2217(02)00559-3
[26] Soltani, A., & Haji, R. (2007). A project scheduling method based on fuzzy theory. Journal of Industrial and Systems Engineering, 1, 70-80.
[27] Taha, H. A. (2003). Operations research: An introduction (7th ed.). New Jersey: Prentice Hall.
[28] Yoon, K. P., & Hwang, C. L. (1995). Multiple attribute decision making: An introduction. Thousand Oaks, CA: Sage Pub. · doi:10.4135/9781412985161
[29] Yuan, Y. (1991). Criteria for evaluating fuzzy ranking methods. Fuzzy Sets and Systems, 43, 139-157. · Zbl 0747.90003 · doi:10.1016/0165-0114(91)90073-Y
[30] Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338-353. · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[31] Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning-II. Information Sciences, 8, 301-357. · Zbl 0404.68074 · doi:10.1016/0020-0255(75)90046-8
[32] Zielinski, P. (2005). On computing the latest starting times and floats of activities in a network with imprecise durations. Fuzzy Sets and Systems, 150, 53-76. · Zbl 1079.90069 · doi:10.1016/j.fss.2004.08.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.