×

A novel parameter estimation method for muskingum model using new Newton-type trust region algorithm. (English) Zbl 1407.86023

Summary: Parameters estimation of Muskingum model is very significative in both exploitation and utilization of water resources and hydrological forecasting. The optimal results of parameters directly affect the accuracy of flood forecasting. This paper considers the parameters estimation problem of Muskingum model from the following two aspects. Firstly, based on the general trapezoid formulas, a class of new discretization methods including a parameter \(\theta\) to approximate Muskingum model is presented. The accuracy of these methods is second-order, when \(\theta \neq 1 / 3\). Particularly, if we choose \(\theta = 1 / 3\), the accuracy of the presented method can be improved to third-order. Secondly, according to the Newton-type trust region algorithm, a new Newton-type trust region algorithm is given to obtain the parameters of Muskingum model. This method can avoid high dependence on the initial parameters. The average absolute errors (AAE) and the average relative errors (ARE) of the proposed algorithm of parameters estimation for Muskingum model are 8.208122 and 2.462438%, respectively, where \(\theta = 1 / 3\). It is shown from these results that the presented algorithm has higher forecasting accuracy and wider practicability than other methods.

MSC:

86A32 Geostatistics
62F10 Point estimation
86A05 Hydrology, hydrography, oceanography
Full Text: DOI

References:

[1] Wilson, E. M., Engineering Hydrology (1990), Macmillan Education
[2] Serrano, S. E., The Theis solution in heterogeneous aquifers, Ground Water, 35, 3, 463-467 (1997) · doi:10.1111/j.1745-6584.1997.tb00106.x
[3] Kang, L.; Wang, C.; Jiang, T. B., A new genetic simulated annealing algorithm for flood routing model, Journal of Hydrodynamics B, 16, 2, 233-239 (2004) · Zbl 1128.90583
[4] Jin, J.; Ding, J., Genetic Algorithm and Its Applications for Water Science (2000), Sichuan University Press
[5] Gill, M. A., Flood routing by the Muskingum method, Journal of Hydrology, 36, 3-4, 353-363 (1978) · doi:10.1016/0022-1694(78)90153-1
[6] Aldama, A. A., Least-squares parameter estimation for Muskingum flood routing, Journal of Hydraulic Engineering, 116, 4, 580-586 (1990) · doi:10.1061/(asce)0733-9429(1990)116:4(580)
[7] Chow, V. T., Handbook of Applied Hydrology (1990), Macmillan Education
[8] Geem, Z. W., Parameter estimation for the nonlinear Muskingum model using the BFGS technique, Journal of Irrigation and Drainage Engineering, 132, 5, 474-478 (2006) · doi:10.1061/(ASCE)0733-9437(2006)132:5(474)
[9] Chen, J.; Yang, X., Optimal parameter estimation for Muskingum model based on Gray-encoded accelerating genetic algorithm, Communications in Nonlinear Science and Numerical Simulation, 12, 5, 849-858 (2007) · doi:10.1016/j.cnsns.2005.06.005
[10] Barati, R., Parameter estimation of nonlinear Muskingum models using nelder-mead simplex algorithm, Journal of Hydrologic Engineering, 16, 11, 946-954 (2011) · doi:10.1061/(ASCE)HE.1943-5584.0000379
[11] Mohan, S., Parameter estimation of nonlinear Muskingum models using genetic algorithm, Journal of Hydraulic Engineering, 123, 2, 137-142 (1997) · doi:10.1061/(asce)0733-9429(1997)123:2(137)
[12] Kim, J. H.; Geem, Z. W.; Kim, E. S., Parameter estimation of the nonlinear Muskingum model using Harmony Search, Journal of the American Water Resources Association, 37, 5, 1131-1138 (2001) · doi:10.1111/j.1752-1688.2001.tb03627.x
[13] Chu, H.-J.; Chang, L.-C., Applying particle swarm optimization to parameter estimation of the nonlinear muskingum model, Journal of Hydrologic Engineering, 14, 9, 1024-1027 (2009) · doi:10.1061/(ASCE)HE.1943-5584.0000070
[14] Luo, J.; Xie, J., Parameter estimation for nonlinear Muskingum model based on immune clonal selection algorithm, Journal of Hydrologic Engineering, 15, 10, 844-851 (2010) · doi:10.1061/(asce)he.1943-5584.0000244
[15] Xu, D.-M.; Qiu, L.; Chen, S.-Y., Estimation of nonlinear Muskingum model parameter using differential evolution, Journal of Hydrologic Engineering, 17, 2, 348-353 (2012) · doi:10.1061/(asce)he.1943-5584.0000432
[16] Chawla, M. M.; Al-Zanaidi, M. A.; Evans, D. J., Generalized trapezoidal formulas for parabolic equations, International Journal of Computer Mathematics, 70, 3, 429-443 (1999) · Zbl 0926.65081 · doi:10.1080/00207169908804765
[17] Ma, C., Optimization Method and the Matlab Programming (2010), Beijing, China: Science Press, Beijing, China
[18] Stephenson, D., Direct optimization of Muskingum routing coefficient, Journal of Hydrologic Engineering, 36, 353-363 (1979)
[19] Powell, M. J. D., A new algorithm for unconstrained optimization, Report, T.P. 393 (1970), Oxfordshire, UK: Atomic Energy Research Establishment, Oxfordshire, UK · Zbl 0228.90043
[20] Esmaeili, H.; Kimiaei, M., A new adaptive trust-region method for system of nonlinear equations, Applied Mathematical Modelling, 38, 11-12, 3003-3015 (2014) · Zbl 1427.65080 · doi:10.1016/j.apm.2013.11.023
[21] Amini, K.; Ahookhosh, M., A hybrid of adjustable trust-region and nonmonotone algorithms for unconstrained optimization, Applied Mathematical Modelling, 38, 9-10, 2601-2612 (2014) · Zbl 1427.90257 · doi:10.1016/j.apm.2013.10.062
[22] Yuan, Y.; Sun, W., Theory and Methods of Optimization (1999), Beijing, China: Science Press, Beijing, China
[23] Ouyang, A.; Tang, Z.; Li, K.; Sallam, A.; Sha, E., Estimating parameters of Muskingum model using an adaptive hybrid PSO algorithm, International Journal of Pattern Recognition and Artificial Intelligence, 28, 1 (2014) · doi:10.1142/s0218001414590034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.