×

Optimal LSBs-based quantum watermarking with lower distortion. (English) Zbl 1407.81052

Summary: Based on the NEQR representation of quantum grayscale images and binary images, the optimal LSBs-based quantum watermarking scheme is investigated in this paper, which embeds several binary images (watermark images) into a grayscale image (cover image). The size of the cover image and secret image are both assumed to be \(2^n \times 2^n\). Compared to quantum simple LSBs substitution method generating one stego-pixel, our presented quantum optimal LSBs-based method can generate three stego-pixel simultaneously first. Then one of them with lowest visual distortion is chosen as the final stego-pixel. To this end, first of all, the quantum circuits for a few basic quantum modules (i.e. Quantum Comparator, Parallel CNOT, Parallel Swap, ADDER MOD, Subtracter (SUB.ER) MOD and Absolute Value) are predefined. Following that, based on these simple modules, two composite quantum modules (i.e. the ADDER and SUB.ER MOD \(2^q\) module and Choose final stego-pixel module) are further constructed. With the help of the basic and composite quantum modules, the integrated quantum circuit implementation of the optimal LSBs-based quantum watermark images embedding/extracting procedures are illustrated. Then, the experiment result are simulated under the classical computer software MATLAB 2014(b), which illustrates our presented optimal LSBs-based quantum watermarking methods are superior to the simple LSBs scheme in terms of PSNR and histogram graphs on the basis of visual effect, and the circuit’s complexity analysis also demonstrates our investigated scheme with a very low computational complexity. Finally, we analyze the security of quantum cryptography system, which verifies the quantum watermarking data can be securely transmitted to other legal normal users.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P68 Quantum computation
68Q12 Quantum algorithms and complexity in the theory of computing
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
68U10 Computing methodologies for image processing
94C05 Analytic circuit theory
68Q10 Modes of computation (nondeterministic, parallel, interactive, probabilistic, etc.)

Software:

Matlab
Full Text: DOI

References:

[1] Shailender, G. and Bhushan, A. G., Int. J. Educ. Comput. Sci.6 (2012) 27.
[2] Chan, C. K. and Cheng, L. M., Pattern Recog.37 (3) (2004) 469. · Zbl 1072.68534
[3] Benioff, P., J. Stat. Phys.22 (5) (1980) 563. · Zbl 1382.68066
[4] Feynman, R. P., Int. J. Theor. Phys.21 (6/7) (1982) 467.
[5] M. Mastriani, Quantum image processing?, arXiv: 1512.02942 [quan-ph]. · Zbl 1373.81147
[6] Yan, F., Iliyasu, A. M. and Le, P. Q., Int. J. Quantum Inf.15 (3) (2017) 1730001. · Zbl 1366.81007
[7] Recent advances and new insights into quantum image processing (2017), http://datamarket.atman360.com/111710.
[8] Yan, F., Iliyasu, A. M. and Venegas-Andraca, S. E., Quantum Inf. Process.15 (1) (2016) 1. · Zbl 1333.81110
[9] Venegas-Andraca, S. E. and Bose, S., Quantum Information & Computation5105(8) (2003) 1085.
[10] J. Latorre, Image compression and entanglement, arXiv:quant-ph/0510031.
[11] Le, P., Dong, F. and Hitora, K., Quantum Inf. Process.10 (1) (2011) 63. · Zbl 1209.81066
[12] Sun, B., Iliyasu, A., Yan, F., Dong, F. and Hitora, K., J. Adv. Comput. Intell. Intell. Inform.17 (3) (2013) 404.
[13] Zhang, Y., Lu, K., Gao, Y. and Wang, M., Quantum Inf. Process.12 (8) (2013) 2833. · Zbl 1283.81042
[14] Zhang, Y., Lu, K., Gao, Y. and Xu, K., Quantum Inf. Process.12 (9) (2013) 3103. · Zbl 1273.81051
[15] Yuan, S. Z.et al., Quantum Inf. Process.13 (6) (2014) 1353. · Zbl 1303.81056
[16] Abdolmaleky, M.et al., Opt. Int. J. Light Electron Opt.128 (2017) 121.
[17] Sang, J. Z., Wang, S. and Li, Q., Quantum Inf. Process.16 (2) (2017) 42. · Zbl 1387.81172
[18] Iliyasu, A. M., Phuc, L. Q., Dong, F. and Hirota, K., Inform. Sci.186 (2011) 126.
[19] Zhang, W. W., Gao, F., Liu, B., Jia, H. Y., Wen, Q. and Chen, H., Int. J. Theor. Phys.52 (2) (2013) 504. · Zbl 1264.81127
[20] Zhang, W. W., Gao, F., Liu, B., Wen, Q. and Chen, H., Quantum Inf. Process.12(2) (2012) 793.
[21] Song, X. H., Wang, S., Liu, S., El-Latif, A. A. and Niu, X. M., Quantum Inf. Process12 (12) (2013) 3689. · Zbl 1303.81052
[22] Song, X. H., Wang, S., Liu, S., El-Latif, A. A. and Niu, X. M., Multimedia Syst.20 (4) (2014) 379.
[23] Wang, S.et al., Measurement73 (2015) 352.
[24] Jiang, N. and Wang, L., Int. J. Theor. Phys.54 (3) (2015) 1021. · Zbl 1328.81081
[25] Jiang, N., Zhao, N. and Wang, L., Int. J. Theor. Phys.55 (2016) 107. · Zbl 1335.81052
[26] Miyake, S. and Nakamae, K., Quantum Inf. Process.15 (2016) 1849. · Zbl 1338.81141
[27] Heidari, S. and Naseri, M., Int. J. Theor. Phys.55 (10) (2016) 4205. · Zbl 1358.81072
[28] Sang, J., Wang, S. and Li, Q., Quantum Inf. Process.15 (11) (2016) 4441. · Zbl 1357.81065
[29] Li, P. C., Zhao, Y., Xiao, H. and Cao, M. J., Quantum Inf. Process.16 (5) (2017) 127. · Zbl 1373.81145
[30] Naseri, M.et al., Opt. Int. J. Light Electron Opt.139 (2017) 77.
[31] Zhou, R. G., Hu, W. W. and Fan, P., Quantum Inf. Process.16 (9) (2017) 212. · Zbl 1387.81179
[32] Heidari, S.et al., Int. J. Quantum Inf.15 (7) (2017) 1750039.
[33] Heidari, S. and Farzadnia, E., Quantum Inf. Process.16 (10) (2017) 242. · Zbl 1387.81155
[34] Zhou, R. G.et al., Int. J. The. Phys.56(6) (2018) 1848.
[35] Zhou, R. G.et al., Int. J. Theor. Phys.57 (4) (2018) 1120.
[36] Zhou, R. G., Hu, W. W., Fan, P. and Luo, G. F., Int. J. Quantum Inform.16 (3) (2018) 1850021. · Zbl 1396.81071
[37] Wu, N. I. and Hwang, M. S., The Imag. Sci. J.65 (6) (2017) 371.
[38] Wang, D., Liu, Z. H., Zhu, W. N. and Li, S. Z., Comput. Sci.39 (9) (2012) 302.
[39] Jiang, N. and Wang, L., Quantum Inf. Process.13 (7) (2014) 1545. · Zbl 1303.81048
[40] Nielsen, M. and Chuang, I. L., Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000). · Zbl 1049.81015
[41] Barenco, A.et al., Phys. Rev. A.52 (1995) 3457. · Zbl 0960.81511
[42] Li, J.et al., Chin. J. Electron.27 (2) (2018) 223.
[43] Bennett, C. H. and Brassard, G., Theoretical Computer Science560(1) (2014) 7.
[44] Ekert, A. K., Phys. Rev. Lett.67 (6) (1991) 661. · Zbl 0990.94509
[45] Bennett, C. H., Phys. Rev. Lett.68 (21) (1992) 3121. · Zbl 0969.94501
[46] Scarani, V.et al., Rev. Mod. Phys.81 (3) (2009) 1301.
[47] Xu, B. J.et al., Comm. Technol.47 (5) (2014) 463.
[48] Gisin, N., Ribordy, G., Tittel, W. and Zbinden, H., Rev. Mod. Phys.74 (1) (2002) 145. · Zbl 1371.81006
[49] Zhao, S., Li, F. and Zheng, B., J. Electron. (China)22 (1) (2005) 85.
[50] Makarov, V. and Hjelme, D. R., J. Mod. Opt.52 (5) (2005) 691.
[51] Qi, B., Fred Fung, C.-H., Lo, H.-K. and Ma, X., Quantum Inf. Comput.7 (1) (2007) 73. · Zbl 1152.81801
[52] Zhao, Y.et al., Phys. Rev. A.78 (4) (2008) 042333.
[53] Fred Fung, C.-H., Qi, B., Tamaki, K. and Lo, H.-K., Phys. Rev. A.75 (2008) 032314.
[54] Lars, L., Carlos, W., Wittmann, E., Dominique Johannes, S. and Vadim Christoffer, M., Nature Photonics4 (2010) 686.
[55] Ilja, G., Qin, L., Antía, L.-L., Johannes, S., Christian, K. and Vadim, M., Nature Comm.2 (2011) 349.
[56] Li, H. W.et al., Phys. Rev. A.84 (6) (2011) 1.
[57] Bouwmeester, D., Ekert, A. and Zeilinger, A., The physics of quantum information, Quantum Cryptography, Quantum Teleportation, Quantum Computation (Springer, 2000). · Zbl 1008.81504
[58] Sharifi, M. and Azizi, H., J. Comput. Sci. Technol.7 (2007) 204.
[59] Pach, A. R. and Niemiec, M., The measure of security in quantum cryptography, 2012 IEEE Global Communications Conference (GLOBECOM) (IEEE, 2012), pp. 967-972.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.