×

Application of base force element method to mesomechanics analysis for concrete. (English) Zbl 1407.74008

Summary: The base force element method (BFEM) on damage mechanics is used to analyze the compressive strength, the size effects of compressive strength, and fracture process of concrete at mesolevel. The concrete is taken as three-phase composites consisting of coarse aggregate, hardened cement mortar, and interfacial transition zone (ITZ) on mesolevel. The random aggregate model is used to simulate the mesostructure of concrete. The mechanical properties and fracture process of concrete under uniaxial compression loading are simulated using the BFEM on damage mechanics. The simulation results agree with the test results. This analysis method is the new way for investigating fracture mechanism and numerical simulation of mechanical properties for concrete.

MSC:

74A40 Random materials and composite materials
74A45 Theories of fracture and damage
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Wang, Z. M.; Kwan, A. K. H.; Chan, H. C., Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh, Computers and Structures, 70, 5, 533-544 (1999) · Zbl 0941.74536
[2] Wittmann, F. H.; Roelfstra, P. E.; Sadouki, H., Simulation and analysis of composite structures, Materials Science and Engineering, 68, 2, 239-248 (1985) · doi:10.1016/0025-5416(85)90413-6
[3] Schlangen, E.; van Mier, J. G. M., Simple lattice model for numerical simulation of fracture of concrete materials and structures, Materials and Structures, 25, 9, 534-542 (1992) · doi:10.1007/BF02472449
[4] Schlangen, E.; Garboczi, E. J., Fracture simulations of concrete using lattice models: computational aspects, Engineering Fracture Mechanics, 57, 2-3, 319-332 (1997) · doi:10.1016/S0013-7944(97)00010-6
[5] Liu, G. T.; Wang, Z. M., Numerical simulation study of fracture of concrete materials using random aggregate model, Journal of Tsinghua University, 36, 1, 84-89 (1996)
[6] Peng, Y. J.; Li, B. K.; Liu, B., Numerical simulation of meso-level mechanical properties of roller compacted concrete, Journal of Hydraulic Engineering, 32, 6, 19-22 (2001)
[7] Du, X. L.; Jin, L.; Ma, G. W., Meso-element equivalent method for the simulation of macro mechanical properties of concrete, International Journal of Damage Mechanics, 22, 5, 617-642 (2013) · doi:10.1177/1056789512457096
[8] Du, X. L.; Jin, L.; Ma, G. W., Macroscopic effective mechanical properties of porous dry concrete, Cement and Concrete Research, 44, 87-96 (2013) · doi:10.1016/j.cemconres.2012.10.012
[9] Jin, L.; Du, X. L.; Ma, G. W., Macroscopic effective moduli and tensile strength of saturated concrete, Cement and Concrete Research, 42, 12, 1590-1600 (2012) · doi:10.1016/j.cemconres.2012.09.012
[10] Du, X. L.; Jin, L., Meso-scale numerical investigation on cracking of cover concrete induced by corrosion of reinforcing steel, Engineering Failure Analysis, 39, 21-33 (2014)
[11] Du, X. L.; Jin, L.; Ma, G. W., A meso-scale analysis method for the simulation of nonlinear damage and failure behavior of reinforced concrete members, International Journal of Damage Mechanics, 22, 6, 878-904 (2013) · doi:10.1177/1056789512468915
[12] Cen, S.; Fu, X. R.; Zhou, M. J., 8- and 12-node plane hybrid stress-function elements immune to severely distorted mesh containing elements with concave shapes, Computer Methods in Applied Mechanics and Engineering, 200, 29-32, 2321-2336 (2011) · Zbl 1230.74173 · doi:10.1016/j.cma.2011.04.014
[13] Cen, S.; Zhou, G.; Fu, X. R., A shape-free 8-node plane element unsymmetric analytical trial function method, International Journal for Numerical Methods in Engineering, 91, 2, 158-185 (2012) · Zbl 1246.74057 · doi:10.1002/nme.4260
[14] Santos, H. A. F. A., Complementary-energy methods for geometrically non-linear structural models: an overview and recent developments in the analysis of frames, Archives of Computational Methods in Engineering, 18, 4, 405-440 (2011) · doi:10.1007/s11831-011-9065-6
[15] Santos, H. A. F. A.; Almeida Paulo, C. I., On a pure complementary energy principle and a force-based finite element formulation for non-linear elastic cables, International Journal of Non-Linear Mechanics, 46, 2, 395-406 (2011) · doi:10.1016/j.ijnonlinmec.2010.10.005
[16] Dong, C. Y.; Zhang, G. L., Boundary element analysis of three dimensional nanoscale inhomogeneities, International Journal of Solids and Structures, 50, 1, 201-208 (2013) · doi:10.1016/j.ijsolstr.2012.09.012
[17] Dong, C. Y.; Pan, E., Boundary element analysis of nanoinhomogeneities of arbitrary shapes with surface and interface effects, Engineering Analysis with Boundary Elements, 35, 8, 996-1002 (2011) · Zbl 1259.74042 · doi:10.1016/j.enganabound.2011.03.004
[18] Chen, S. S.; Li, Q. H.; Liu, Y. H.; Xue, Z. Q., A meshless local natural neighbour interpolation method for analysis of two-dimensional piezoelectric structures, Engineering Analysis with Boundary Elements, 37, 2, 273-279 (2013) · Zbl 1351.74079 · doi:10.1016/j.enganabound.2012.10.002
[19] Chen, S. S.; Liu, Y. H.; Li, J.; Cen, Z. Z., Performance of the MLPG method for static shakedown analysis for bounded kinematic hardening structures, European Journal of Mechanics A: Solids, 30, 2, 183-194 (2011) · Zbl 1261.74034 · doi:10.1016/j.euromechsol.2010.10.005
[20] Peng, Y. J.; Liu, Y. H., Base force element method of complementary energy principle for large rotation problems, Acta Mechanica Sinica, 25, 4, 507-515 (2009) · Zbl 1178.74171 · doi:10.1007/s10409-009-0234-x
[21] Peng, Y. J.; Dong, Z. L.; Peng, B.; Liu, Y. H., Base force element method (BFEM) on potential energy principle for elasticity problems, International Journal of Mechanics and Materials in Design, 7, 3, 245-251 (2011) · doi:10.1007/s10999-011-9162-6
[22] Peng, Y. J.; Dong, Z. L.; Peng, B.; Zong, N. N., The application of 2D base force element method (BFEM) to geometrically non-linear analysis, International Journal of Non-Linear Mechanics, 47, 3, 153-161 (2012) · doi:10.1016/j.ijnonlinmec.2011.12.003
[23] Peng, Y. J.; Pu, J. W.; Peng, B.; Zhang, L. J., Two-dimensional model of base force element method (BFEM) on complementary energy principle for geometrically nonlinear problems, Finite Elements in Analysis and Design, 75, 78-84 (2013) · Zbl 1291.74179 · doi:10.1016/j.finel.2013.07.001
[24] Peng, Y. J.; Zhang, L. J.; Pu, J. W.; Guo, Q., A two-dimensional base force element method using concave polygonal mesh, Engineering Analysis with Boundary Elements, 42, 45-50 (2014) · Zbl 1297.74127 · doi:10.1016/j.enganabound.2013.09.002
[25] Peng, Y. J.; Zong, N. N.; Zhang, L. J.; Pu, J. W., Application of 2D base force element method with complementary energy principle for arbitrary meshes, Engineering Computations, 31, 4, 1-15 (2014)
[26] Gao, Y. C., A new description of the stress state at a point with applications, Archive of Applied Mechanics, 73, 3-4, 171-183 (2003) · Zbl 1068.74509 · doi:10.1007/s00419-003-0278-5
[27] Peng, Y. J.; Liu, Y. H.; Pu, J. W.; Zhang, L. J., Application of base force element method to mesomechanics analysis for recycled aggregate concrete, Mathematical Problems in Engineering, 2013 (2013) · doi:10.1155/2013/292801
[28] Walraven, J. C.; Reinhardt, H. W., Theory and experiments on the mechanical behavior of cracks in plain and reinforced concrete subjected to shear loading, Heron, 26, 1, 1-68 (1981)
[29] Wang, Z. L.; Lin, F.; Gu, X. L., Numerical simulation of failure process of concrete under compression based on mesoscopic discrete element model, Tsinghua Science and Technology, 13, 19-25 (2008) · doi:10.1016/S1007-0214(08)70121-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.