×

A weak Galerkin mixed finite element method for the Helmholtz equation with large wave numbers. (English) Zbl 1407.65302

Summary: In this article, a new weak Galerkin mixed finite element method is introduced and analyzed for the Helmholtz equation with large wave numbers. The stability and well-posedness of the method are established for any wave number \(k\) without mesh size constraint. Allowing the use of discontinuous approximating functions makes weak Galerkin mixed method highly flexible in term of little restrictions on approximations and meshes. In the weak Galerkin mixed finite element formulation, approximation functions can be piecewise polynomials with different degrees on different elements and meshes can consist elements with different shapes. Suboptimal order error estimates in both discrete \(H^1\) and \(L^2\) norms are established for the weak Galerkin mixed finite element solutions. Numerical examples are tested to support the theory.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] I.Babuška, S. A.Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave number?SIAM J. Numer. Anal. vol. 34 (1997) pp. 2392-2423. · Zbl 0894.65050
[2] I.Babuška, F.Ihlenburg, E. T.Paik, S. A.Sauter, A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution, Comput. Methods Appl. Mech. Eng. vol. 128 (1995) pp. 325-359. · Zbl 0863.73055
[3] G.Bao, G. W.Wei, S.Zhao, Numerical solution of the Helmholtz equation with high wavenubers, Int. J. Numer. Meth. Eng. vol. 59 (2004) pp. 389-408. · Zbl 1043.65132
[4] P. G.Ciarlet, The finite element method for elliptic problems, North‐Holland, New York, 1978. · Zbl 0383.65058
[5] P.Cummings, X.Feng, Sharp regularity coefficient estimates for the complex‐valued acoustic and elastic Helmholtz equations, Math. Models Methods Appl. Sci. vol. 16 (2006) pp. 39-160. · Zbl 1134.35317
[6] I.Harari, T.Hughes, Finite element methods for the Helmholtz equation in an exterior domain: Model problems, Comput. Methods Appl. Mech. Eng. vol. 87 (1991) pp. 59-96. · Zbl 0760.76047
[7] F.Ihlenburg, I.Babuška, Finite element solution of the Helmholtz equation with high wave number Part II: The h‐p version of the FEM, SIAM J. Numer. Anal. vol. 34 (1997) pp. 315-358. · Zbl 0884.65104
[8] J. M.Melenk, I.Babuška, The partition of unity finite element method: Basic theory and applications, Comput. Methods Appl. Mech. Engrg. vol. 139 (1996) pp. 289-314. · Zbl 0881.65099
[9] J.Shen, L.Wang, Analysis of a spectral‐Galerkin approximation to the Helmhotlz equation in exterior domains, SIAM J. Numer. Anal. vol. 45 (2007) pp. 1954-1978. · Zbl 1154.65082
[10] S. N.Chandler‐Wilde, S.Langdon, A Galerkin boundary element method for high frequency scattering by convex polygons, SIAM J. Numer. Anal. vol. 45 (2007) pp. 610-640. · Zbl 1162.35020
[11] E.Giladi, Asymptotically derived boundary elements for the Helmholtz equation in high frequencies, J. Comput. Appl. Math. vol. 198 (2007) pp. 52-74. · Zbl 1102.65120
[12] S.Langdon, S. N.Chandler‐Wilde, A wavenumber independent boundary element method for an accoustic scattering problem, SIAM J. Numer. Anal. vol. 43 (2006) pp. 2450-2477. · Zbl 1108.76047
[13] S.Zhao, High order matched interface and boundary methods for the Helmholtz equation in media with arbitrarily curved interfaces, J. Comput. Phys. vol. 229 (2010) pp. 3155-3170. · Zbl 1187.78044
[14] O.Cessenat, B.Després, Using plane waves as base functions for solving time harmonic equations with the ultra weak varational formulation, J. Comput. Acoust. vol. 11 (2003) pp. 227-238. · Zbl 1360.76127
[15] E.Heikkola, S.Mönkölä, A.Pennanen, T.Rossi, Controllability method for the Helmholtz equation with higher‐order discretizations, J. Comput. Phys. vol. 225 (2007) pp. 1553-1576. · Zbl 1117.93014
[16] M.Ainsworth, P.Monk, W.Muniz, Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second‐order wave equation, J. Sci. Comput. vol. 27 (2006) pp. 5-40. · Zbl 1102.76032
[17] E.T.Chung, B.Engquist, Optimal discontinuous Galerkin methods for wave propagation, SIAM J. Numer. Anal. vol. 44 (2006) pp. 2131-2158. · Zbl 1158.65337
[18] C.Harhat, R.Tezaur, P.Weidemann‐Goiran, Higher‐order extensions of a discontinuous Galerkin method for mid‐frequency Helmholtz problems, Inter. J. Numer. Methods. Eng. vol. 61 (2004) pp. 1938-1956. · Zbl 1075.76572
[19] J.Wang, X.Ye, A weak Galerkin finite element method for second‐order elliptic problems, J. Comput. Appl. Math. vol. 241 (2013) pp. 103-115. · Zbl 1261.65121
[20] J.Wang, X.Ye, A Weak Galerkin mixed finite element method for second‐order elliptic problems, Math. Comp. vol. 83 (2014) pp. 2101-2126. · Zbl 1308.65202
[21] J.Wang, X.Ye, A weak Galerkin finite element method for the stokes equations, Adv. Comput. Math. vol. 42 (2016) pp. 155-174. · Zbl 1382.76178
[22] R.Wang, X.Wang, Q.Zhai, R.Zhang, A weak Galerkin finite element scheme for solving the stationary Stokes equations, J. Comput. Appl. Math. vol. 302 (2016) pp. 171-185. · Zbl 1337.65162
[23] L.Mu, J.Wang, X.Ye, A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods, J. Comput. Phys. vol. 273 (2014) pp. 327-342. · Zbl 1351.76072
[24] X.Wang, Q.Zhai, R.Zhang, The weak Galerkin method for solving the incompressible Brinkman flow, J. Comput. Appl. Math. vol. 307 (2016) pp. 13-24. · Zbl 1338.76069
[25] Q.Zhai, R.Zhang, L.Mu, A new weak Galerkin finite element scheme for the Brinkman model, Commun. Comput. Phys. vol. 19 (2016) pp. 1409-1434. · Zbl 1373.76108
[26] L.Mu, J.Wang, X.Ye, S.Zhang, A C0‐weak Galerkin finite element method for the biharmonic equation, J. Sci. Comput. vol. 59 (2014) pp. 473-495. · Zbl 1305.65233
[27] R.Zhang, Q.Zhai, A weak Galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order, J. Sci. Comput. vol. 64 (2015) pp. 559-585. · Zbl 1331.65163
[28] C.Wang, J.Wang, R.Wang, R.Zhang, A locking‐free weak Galerkin finite element method for elasticity problems in the primal formulation, J. Comput. Appl. Math. vol. 307 (2016) pp. 346-366. · Zbl 1338.74104
[29] R.Wang, R.Zhang, A weak Galerkin finite element method for the linear elasticity problem in mixed form, J. Comput. Math. vol. 36 (2018) pp. 1-23.
[30] A.Buffa, P.Monk, Error Estimates for the ultra weak variational formulation of the Helmholtz equation, E2AN Math. Model. Numer. Anal. vol. 42 (2008) pp. 925-940. · Zbl 1155.65094
[31] P.Monk, J.Schöberl, A.Sinwel, Hybridizing Raviart‐Thomas Elements for the Helmholtz equation,Electromagnetics vol. 30 (2010) pp. 149-176.
[32] X.Feng, H.Wu, Discontinuous Galerkin methods for the Helmholtz equation with large wave number, SIAM J. Numer. Anal. vol. 47 (2009) pp. 2872-2896. · Zbl 1197.65181
[33] X.Feng, H.Wu, hp‐discontinuous Galerkin methods for the Helmholtz equation with large wave number, Math. Comp. vol. 80 (2011) pp. 1997-2024. · Zbl 1228.65222
[34] X.Feng, Y.Xing, Absolutely stable local discontinuous Galerkin methods for the Helmholtz equation with large wave number, Math. Comp. vol. 82 (2013) pp. 1269-1296. · Zbl 1276.65080
[35] J. C.Zhang, K.Zhang, J. Z.Li, Z. B.He, A weak Galerkin method for diffraction gratings, Appl. Anal. vol. 96 (2017) pp. 190-214. · Zbl 1360.78031
[36] L.Mu, J.Wang, X.Ye, S.Zhao, A numerical study on the weak Galerkin method for the Helmholtz equation, Commun. Comput. Phys. vol. 15 (2014) pp. 1461-1479. · Zbl 1388.65156
[37] L.Mu, J.Wang, X.Ye, A new weak Galerkin finite element method for the Helmholtz equation, IMA J. Numer. Anal. vol. 35 (2015) pp. 1228-1255. · Zbl 1323.65116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.