×

Three methods for two-sided bounds of eigenvalues. A comparison. (English) Zbl 1407.65300

Summary: We compare three finite element-based methods designed for two-sided bounds of eigenvalues of symmetric elliptic second order operators. The first method is known as the Lehmann-Goerisch method. The second method is based on Crouzeix-Raviart nonconforming finite element method. The third one is a combination of generalized Weinstein and Kato bounds with complementarity-based estimators. We concisely describe these methods and use them to solve three numerical examples. We compare their accuracy, computational performance, and generality in both the lowest and higher order case.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J15 Second-order elliptic equations
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
35P15 Estimates of eigenvalues in context of PDEs

References:

[1] I.Babuška, J. E.Osborn, Eigenvalue problems, Handbook of numerical analysis, Vol. II (Amsterdam), North‐Holland, Amsterdam, 1991, pp. 641-787. · Zbl 0875.65087
[2] D.Boffi, Finite element approximation of eigenvalue problems, Acta Numer. vol. 19 (2010) pp. 1-120. · Zbl 1242.65110
[3] G.Temple, The theory of Rayleigh’s principle as applied to continuous systems, Proc. Roy. Soc. London Ser. A vol. 119 (1928) pp. 276-293. · JFM 54.0852.01
[4] A.Weinstein, Étude des spectres des équations aux dérivées partielles de la théorie des plaques élastiques, Mem. Sci. Math. vol. 88, Paris: Gauthier‐Villars, 1937. · JFM 63.1324.01
[5] T.Kato, On the upper and lower bounds of eigenvalues, J. Phys. Soc. Japan vol. 4 (1949) pp. 334-339.
[6] E. M.Harrell, Generalizations of Temple’s inequality, Proc. Amer. Math. Soc. vol. 69 (1978) pp. 271-276. · Zbl 0345.47007
[7] N. J.Lehmann, Beiträge zur numerischen Lösung linearer Eigenwertprobleme. I, Z. Angew. Math. Mech. vol. 29 (1949) pp. 341-356. · Zbl 0034.37901
[8] N. J.Lehmann, Beiträge zur numerischen Lösung linearer Eigenwertprobleme. II, Z. Angew. Math. Mech. vol. 30 (1950) pp. 1-16.
[9] F.Goerisch, H.Haunhorst, Eigenwertschranken für Eigenwertaufgaben mit partiellen Differentialgleichungen, Z. Angew. Math. Mech. vol. 65 (1985) pp. 129-135. · Zbl 0568.73051
[10] L.Grubišić, J. S.Ovall, On estimators for eigenvalue/eigenvector approximations, Math. Comp. vol. 78 (2009) pp. 739-770. · Zbl 1198.65221
[11] K.Kobayashi, On the interpolation constants over triangular elements, In: J.Brandts (ed.), S.Korotov (ed.), M.Křížek (ed.), K.Segeth (ed.), J.Šístek (ed.), and T.Vejchodský (ed.) (eds.), Applications of Mathematics 2015, Institute of Mathematics CAS, Prague, 2015, pp. 110-124. · Zbl 1329.00187
[12] Y. A.Kuznetsov, S. I.Repin, Guaranteed lower bounds of the smallest eigenvalues of elliptic differential operators, J. Numer. Math. vol. 21 (2013) pp. 135-156. · Zbl 1282.65144
[13] S. I.Repin, Computable majorants of constants in the Poincaré and Friedrichs inequalities, J. Math. Sci. vol. 186 (2012) pp. 307-321. · Zbl 1278.35167
[14] H.Behnke, F.Goerisch, Inclusions for eigenvalues of selfadjoint problems, Topics in validated computations (Oldenburg, 1993), Stud. Comput. Math., vol. 5, North‐Holland, Amsterdam, 1994, pp. 277-322. · Zbl 0838.65060
[15] M.Plum, Guaranteed numerical bounds for eigenvalues, Spectral theory and computational methods of Sturm‐Liouville problems (Knoxville, TN, 1996), Lecture Notes in Pure and Appl. Math., vol. 191, Dekker, New York, 1997, pp. 313-332. · Zbl 0885.47006
[16] H.Behnke, U.Mertins, M.Plum, C.Wieners, Eigenvalue inclusions via domain decomposition., Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. vol. 456 (2000) pp. 2717-2730 (English). · Zbl 0993.65120
[17] X.Liu, S.Oishi, Verified eigenvalue evaluation for Laplace operator on arbitrary polygonal domain, Proceedings of RIMS workshop held on 18-21 October 2010, vol. 1733, RIMS Kokyuroku, 2011, pp. 31-39.
[18] X.Liu, S.Oishi, Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape, SIAM J. Numer. Anal. vol. 51 (2013) pp. 1634-1654. · Zbl 1273.65179
[19] C.Carstensen, D.Gallistl, Guaranteed lower eigenvalue bounds for the biharmonic equation, Numer. Math. vol. 126 (2014) pp. 33-51. · Zbl 1298.65165
[20] C.Carstensen, J.Gedicke, Guaranteed lower bounds for eigenvalues, Math. Comp. vol. 83 (2014) pp. 2605-2629. · Zbl 1320.65162
[21] X.Liu, A framework of verified eigenvalue bounds for self‐adjoint differential operators, Appl. Math. Comput. vol. 267 (2015) pp. 341-355. · Zbl 1410.35088
[22] M. G.Armentano, R. G.Durán, Asymptotic lower bounds for eigenvalues by nonconforming finite element methods, Electron. Trans. Numer. Anal. vol. 17 (2004) pp. 93-101 (electronic). · Zbl 1065.65127
[23] F.Luo, Q.Lin, H.Xie, Computing the lower and upper bounds of Laplace eigenvalue problem: By combining conforming and nonconforming finite element methods, Sci. China Math. vol. 55 (2012) pp. 1069-1082. · Zbl 1261.65112
[24] A.Andreev, M.Racheva, Two‐sided bounds of eigenvalues of second‐and fourth‐order elliptic operators, Appl. Math. vol. 59 (2014) pp. 371-390. · Zbl 1340.65256
[25] J.Hu, Y.Huang, Q.Lin, Lower bounds for eigenvalues of elliptic operators: By nonconforming finite element methods, J. Sci. Comput. vol. 61 (2014) pp. 196-221. · Zbl 1335.65089
[26] J.Hu, Y.Huang, Q.Shen, The lower/upper bound property of approximate eigenvalues by nonconforming finite element methods for elliptic operators, J. Sci. Comput. vol. 58 (2014) pp. 574-591. · Zbl 1301.65117
[27] Q.Lin, F.Luo, H.Xie, A posterior error estimator and lower bound of a nonconforming finite element method, J. Comput. Appl. Math. vol. 265 (2014) pp. 243-254. · Zbl 1293.65158
[28] Q.Lin, H.Xie, F.Luo, Y.Li, Y.Yang, Stokes eigenvalue approximations from below with nonconforming mixed finite element methods, Math. Pract. Theory vol. 40 (2010) pp. 157-168. · Zbl 1493.65214
[29] Y.Yang, J.Han, H.Bi, Y.Yu, The lower/upper bound property of the Crouzeix‐Raviart element eigenvalues on adaptive meshes, J. Sci. Comput. vol. 62 (2015) pp. 284-299. · Zbl 1320.65163
[30] Y.Yang, Z.Zhang, F.Lin, Eigenvalue approximation from below using non‐conforming finite elements, Sci. China Math. vol. 53 (2010) pp. 137-150. · Zbl 1187.65125
[31] T.Vejchodský, I.Šebestová, New guaranteed lower bounds on eigenvalues by conforming finite elements, arXiv:1705.10180 (2017), 26p.
[32] I.Šebestová, T.Vejchodský, Two‐sided bounds for eigenvalues of differential operators with applications to Friedrichs, Poincaré, trace, and similar constants, SIAM J. Numer. Anal. vol. 52 (2014) pp. 308-329. · Zbl 1287.35050
[33] J.Haslinger, I.Hlaváček, Convergence of a finite element method based on the dual variational formulation, Apl. Mat. vol. 21 (1976) pp. 43-65. · Zbl 0326.35020
[34] I.Hlaváček, Some equilibrium and mixed models in the finite element method, Mathematical models and numerical methods (Papers, Fifth Semester, Stefan Banach Internat. Math. Center, Warsaw, 1975) (Warsaw), Banach Center Publ., vol. 3, PWN, Warsaw, 1978, pp. 147-165. · Zbl 0376.35018
[35] I.Hlaváček, M.Křížek, Internal finite element approximations in the dual variational method for second order elliptic problems with curved boundaries, Apl. Mat. vol. 29 (1984) pp. 52-69. · Zbl 0543.65074
[36] T.Vejchodský, Complementarity based a posteriori error estimates and their properties, Math. Comput. Simul. vol. 82 (2012) pp. 2033-2046 (English). · Zbl 1256.65097
[37] T.Vejchodský, Complementary error bounds for elliptic systems and applications, Appl. Math. Comput. vol. 219 (2013) pp. 7194-7205 (English). · Zbl 1288.65171
[38] M.Ainsworth, T.Vejchodský, Robust error bounds for finite element approximation of reaction‐diffusion problems with non‐constant reaction coefficient in arbitrary space dimension, Comput. Methods Appl. Mech. Engrg. vol. 281 (2014) pp. 184-199. · Zbl 1425.65140
[39] P.Oswald, Multilevel finite element approximation: Theory and applications, Stuttgart, Vieweg+Teubner Verlag, 1994. · Zbl 0830.65107
[40] C.Carstensen, C.Merdon, Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem, J. Comput. Appl. Math. vol. 249 (2013) pp. 74-94. · Zbl 1285.65079
[41] D.Braess, J.Schöberl, Equilibrated residual error estimator for edge elements, Math. Comp. vol. 77 (2008) pp. 651-672. · Zbl 1135.65041
[42] V.Dolejší, A.Ern, M.Vohralík, hp‐adaptation driven by polynomial‐degree‐robust a posteriori error estimates for elliptic problems, SIAM J. Sci. Comput. vol. 38 (2016) pp. A3220-A3246. · Zbl 1351.65082
[43] A.Ern, M.Vohralík, Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, SIAM J. Sci. Comput. vol. 35 (2013) pp. A1761-A1791. · Zbl 1362.65056
[44] L. N.Trefethen, T.Betcke, Computed eigenmodes of planar regions, In: N. Chernov, Y. Karpeshina, I. W. Knowles, R. T. Lewis, and R. Weikard (eds.), Recent advances in differential equations and mathematical physics, Contemp. Math., vol. 412, Amer. Math. Soc., Providence, RI, 2006, pp. 297-314. · Zbl 1107.65101
[45] P.Grisvard, Problèmes aux limites dans les polygones. Mode d’emploi, EDF Bull. Direction Études Rech. Sér. C Math. Inform. vol. 3 (1986) pp. 21-59. · Zbl 0623.35031
[46] G. R.Barrenechea, L.Boulton, N.Boussaïd, Finite element eigenvalue enclosures for the Maxwell operator, SIAM J. Sci. Comput. vol. 36 (2014) pp. A2887-A2906. · Zbl 1317.78012
[47] X.Liu, S.Oishi, Guaranteed high‐precision estimation for P_0 interpolation constants on triangular finite elements, Jpn. J. Ind. Appl. Math. vol. 30 (2013) pp. 635-652. · Zbl 1300.65078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.