×

Optimal error estimate of a conformal Fourier pseudo-spectral method for the damped nonlinear Schrödinger equation. (English) Zbl 1407.65215

Summary: In this article, a Fourier pseudospectral method, which preserves the conforal conservation la, is proposed for solving the damped nonlinear Schrödinger equation. Based on the energy method and the semi-norm equivalence between the Fourier pseudospectral method and the finite difference method, a priori estimate for the new method is established, which shows that the proposed method is unconditionally convergent with order of \(O(\tau^2 + J^{1-r})\) in the discrete \(L^{\infty}\)-norm, where \(\tau\) is the time step and \(J\) is the number of collocation points used in the spectral method. Some numerical results are addressed to confirm our theoretical analysis.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65T50 Numerical methods for discrete and fast Fourier transforms
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
47H10 Fixed-point theorems
Full Text: DOI

References:

[1] H.Segur, D.Henderson, J.Carter, J.Hammack, C. M.Li, D.Pheiff, K.Socha, Stabilizing the Benjamin‐Feir instability, J. Fluid Mech. vol. 539 (2005) pp. 229-271. · Zbl 1120.76022
[2] A.Hasegawa, Y.Kodama, Solitons in optical communications, Oxford University, Oxford, 1995. · Zbl 0840.35092
[3] W. Z.Bao, D.Jaksch, An explicit unconditionally stable numerical method for solving damped nonlinear Schrödinger equations with a focusing nonlinearity, SIAM J. Numer. Anal. vol. 41 (2003) pp. 1406-1426. · Zbl 1054.35088
[4] R. I.McLachlan, M.Perlmutter, Conformal Hamiltonian systems, J. Geom. Phys. vol. 39 (2001) pp. 276-300. · Zbl 1005.53058
[5] G.Fibich, Self‐focusing in the damped nonlinear Schrödinger equation, SIAM J. Appl. Math. vol. 61 (2001) pp. 1680-1705. · Zbl 0987.78018
[6] M.Tsutsumi, Nonexistence of global solutions to the Cauchy problem for the damped nonlinear Schrödinger equations, SIAM J. Math. Anal. vol. 15 (1984) pp. 357-366. · Zbl 0539.35022
[7] R.Temam, Infinite‐dimensional dynamical systems in mechanics and physics, 2nd edition, Springer Science & Business Media, New York, 2012.
[8] R.Ciegis, V.Pakalnyte, The finite difference scheme for the solution of weakly damped nonlinear Schrödinger equation, Int. J. Appl. Sci. Comput. vol. 8 (2001) pp. 127-134.
[9] W.Z.Dai, R.Nassar, A finite difference scheme for the generalized nonlinear Schrödinger equation with variable coefficients, J. Comput. Math. vol. 18 (2000) pp. 123-132. · Zbl 0954.65068
[10] M.Delfour, M.Fortin, G.Payr. Finite‐difference solutions of a non‐linear Schrödinger equation, J. Comput. Phys. vol. 44 (1981) pp. 277-288. · Zbl 0477.65086
[11] S. R. K.Iyengar, G.Jayaraman, V.Balasubramanian, Variable mesh difference schemes for solving a nonlinear Schrödinger equation with a linear damping term, Comput. Math. Appl. vol. 40 (2000) pp. 1375-1385. · Zbl 0965.65109
[12] L. S.Peranich, A finite difference scheme for solving a non‐linear Schrödinger equation with a linear damping term, J. Comput. Phys. vol. 68 (1987) pp. 501-505. · Zbl 0626.65139
[13] T. C.Wang, G. D.Wang, W.Zhang, N. X.He, An unconditionally convergent and linearized compact finite difference scheme for the nonlinear Schrödinger equation, Acta. Math. Appl. Sinica. vol. 40 (2017) pp. 1-15 (in chinese). · Zbl 1399.65172
[14] F. Y.Zhang, S. J.Lu, Long‐time behavior of finite difference solutions of a nonlinear Schrödinger equation with weakly damped, J. Comput. Math. vol. 19 (2001) pp. 393-406. · Zbl 0988.65073
[15] W. P.Hu, Z. C.Deng, T. T.Yin, Almost structure‐preserving analysis for weakly linear damping nonlinear Schrödinger equation with periodic perturbation, Commun. Nonlinear. Sci. Numer. Simulat. vol. 42 (2017) pp. 298-312. · Zbl 1473.35507
[16] K.Feng, M. Z.Qin, Symplectic geometric algorithms for Hamiltonian systems. Springer and Zhejiang Science and Technology Publishing House, Heidelberg Hangzhou, 2010. · Zbl 1207.65149
[17] E.Hairer, C.Lubich, G.Wanner, Geometric numerical integration: Structure‐preserving algorithms for ordinary differential equations, 2nd edition, Springer‐Verlag, Berlin, 2006. · Zbl 1094.65125
[18] B.Leimkuhler, S.Reich, Simulating Hamiltonian dynamics, Cambridge University Press, Cambridge, 2004. · Zbl 1069.65139
[19] R. I.McLachlan, G. R. W.Quispel, Splitting methods, Acta Numer. vol. 11 (2002) pp. 341-434. · Zbl 1105.65341
[20] B. E.Moore, Conformal multi‐symplectic integration methods for forced‐damped semi‐linear wave equations, Math. Comput. Simulat. vol. 80 (2009) pp. 20-28. · Zbl 1177.65182
[21] B. E.Moore, L.Noreña, C. M.Schober, Conformal conservation laws and geometric integration for damped Hamiltonian PDEs, J. Comput. Phys. vol. 232 (2013) pp. 214-233. · Zbl 1291.35129
[22] X. L.Kong, H. B.Wu, F. X.Mei, Structure‐preserving algorithms for Birkhoffian systems, J. Geom. Phys. vol. 62 (2012) pp. 1157-1166. · Zbl 1259.37050
[23] H. L.Su, M. Z.Qin, Y. S.Wang, R.Scherer, Multi‐symplectic Birkhoffian structure for PDEs with dissipation terms, Phys. Lett. A vol. 374 (2010) pp. 2410-2416. · Zbl 1237.37055
[24] Y. J.Sun, Z. J.Shang, Structure‐preserving algorithms for Birkhoffian systems, Phys. Lett. A vol. 336 (2005) pp. 358-369. · Zbl 1136.70322
[25] J.Shen, T.Tang, Spectral and High‐Order Methods with Applications, Science Press, Beijing, 2006. · Zbl 1234.65005
[26] T. J.Bridges, S.Reich, Multi‐symplectic spectral discretizations for the Zakharov‐Kuznetsov and shallow water equations, Phys. D. vol. 152/153 (2001) pp. 491-504. · Zbl 1032.76053
[27] J. B.Chen, M. Z.Qin, Multi‐symplectic Fourier pseudospectral method for the nonlinear Schrödinger equation, Electr. Trans. Numer. Anal. vol. 12 (2001) pp. 193-204. · Zbl 0980.65108
[28] Y. M.Chen, S. H.Song, H. J.Zhu, The multi‐symplectic Fourier pseudospectral method for solving two‐dimensional Hamiltonian PDEs, J. Comput. Appl. Math. vol. 236 (2011) pp. 1354-1369. · Zbl 1231.65173
[29] Y. Z.Gong, J. X.Cai, Y. S.Wang, Multi‐symplectic Fourier pseudospectral method for the Kawahara equation, Commun. Comput. Phys. vol. 16 (2014) pp. 35-55. · Zbl 1388.65119
[30] Y. Z.Gong, Q.Wang, Y.S.Wang, J. X.Cai, A conservative Fourier pseudo‐spectral method for the nonlinear Schrödinger equation, J. Comput. Phys. vol. 328 (2017) pp. 354-370. · Zbl 1406.35356
[31] L. H.Kong, J. J.Zhang, Y.Cao, Y. L.Duan, H.Huang, Semi‐explicit symplectic partitioned Runge‐Kutta Fourier pseudo‐spectral scheme for Klein‐Gordon‐Schrödinger equations, Comput. Phys. Commun. vol. 181 (2010) pp. 1369-1377. · Zbl 1219.65109
[32] J. L.Wang, Y. S.Wang, Numerical analysis of a new conservative scheme for the coupled nonlinear Schrödinger equations, Int. J. Comput. Math. (2017) pp. 1-25. https://doi.org/10.1080/00207160.2017.1322692 · Zbl 1499.65439 · doi:10.1080/00207160.2017.1322692
[33] X.Antoine, W. Z.Bao, C.Besse, Computational methods for the dynamics of the nonlinear Schrödinger/Gross‐Pitaevskii equations, Comput. Phys. Commun. vol. 184 (2013) pp. 2621-2633. · Zbl 1344.35130
[34] T. C.Wang, B. L.Guo, Unconditional convergence of two conservative compact difference schemes for non‐linear Schrödinger equation in one dimension, Sci. Sin. Math. vol. 41 (2011) pp. 207-233 (in Chinese). · Zbl 1488.65296
[35] P. C.Hansen, J. G.Nagy, D. P.O’leary, Deblurring images: Matrices, spectra, and filtering, Chapter 4, SIAM, 2006. · Zbl 1112.68127
[36] Y. L.Zhou, Applications of discrete functional analysis to the finite difference method, International Academic Publishers, Beijing, 1990.
[37] W. Z.Bao, D.Jaksch, P. A.Markowich, Three dimensional simulation of jet formation in collapsing condensates, J. Phys. B At. Mol. Opt. Phys. vol. 37 (2003) pp. 329-343.
[38] W. Z.Bao, Y. Y.Cai, Uniform error estimates of finite difference methods for the nonlinear schrödinger equation with wave operator, SIAM J. Numer. Anal. vol. 50 (2012) pp. 492-521. · Zbl 1246.35188
[39] W. Z.Bao, Y. Y.Cai, Optimal error estimates of finite difference methods for the Gross‐Pitaevskii equation with angular momentum rotation, Math. Comp. vol. 82 (2013) pp. 99-128. · Zbl 1264.65146
[40] G. D.Akrivis, V. A.Dougalis, O. A.Karakashian, On fully discrete Galerkin methods of second‐order temporal accuracy for the nonlinear Schrödinger equation, Numer. Math. vol. 59 (1991) pp. 31-53. · Zbl 0739.65096
[41] F. E.Browder, Existence and uniqueness theorems for solutions of nonlinear boundary value problems, In: Application of nonlinear partial differential equations, Pro. Symp. Appl. Math. AMS Providence, vol. 17, pp. 24-49, 1965. · Zbl 0145.35302
[42] C.Canuto, A.Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comp. vol. 38 (1982) pp. 67-86. · Zbl 0567.41008
[43] Z. Z.Sun, D. D.Zhao, On the \(L^\infty\) convergence of a difference scheme for coupled nonlinear Schrödinger equations, Comput. Math. Appl. vol. 59 (2010) pp. 3286-3300. · Zbl 1198.65173
[44] H.Fu, W. E.Zhou, X.Qian, S. H.Song, L. Y.Zhang, Conformal structure‐preserving method for damped nonlinear Schrödinger equation, Chin. Phys. B. vol. 25 (2016) pp. 110201.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.