×

Efficiently implementing the maximum likelihood estimator for Hurst exponent. (English) Zbl 1407.62067

Summary: This paper aims to efficiently implement the maximum likelihood estimator (MLE) for Hurst exponent, a vital parameter embedded in the process of fractional Brownian motion (FBM) or fractional Gaussian noise (FGN), via a combination of the Levinson algorithm and Cholesky decomposition. Many natural and biomedical signals can often be modeled as one of these two processes. It is necessary for users to estimate the Hurst exponent to differentiate one physical signal from another. Among all estimators for estimating the Hurst exponent, the maximum likelihood estimator (MLE) is optimal, whereas its computational cost is also the highest. Consequently, a faster but slightly less accurate estimator is often adopted. Analysis discovers that the combination of the Levinson algorithm and Cholesky decomposition can avoid storing any matrix and performing any matrix multiplication and thus save a great deal of computer memory and computational time. In addition, the first proposed MLE for the Hurst exponent was based on the assumptions that the mean is known as zero and the variance is unknown. In this paper, all four possible situations are considered: known mean, unknown mean, known variance, and unknown variance. Experimental results show that the MLE through efficiently implementing numerical computation can greatly enhance the computational performance.

MSC:

62F10 Point estimation
60G22 Fractional processes, including fractional Brownian motion
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)

Software:

longmemo
Full Text: DOI

References:

[1] Wang, Y.-Z.; Li, B.; Wang, R.-Q.; Su, J.; Rong, X.-X., Application of the Hurst exponent in ecology, Computers & Mathematics with Applications, 61, 8, 2129-2131 (2011) · Zbl 1219.92068 · doi:10.1016/j.camwa.2010.08.095
[2] Mandelbrot, B. B., The Fractal Geometry of Nature (1983), New York, NY, USA: W. H. Freeman, New York, NY, USA · Zbl 0504.28001
[3] Pentland, A. P., Fractal-based description of natural scenes, IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 6, 661-674 (1984)
[4] Hagerhall, C. M.; Purcell, T.; Taylor, R., Fractal dimension of landscape silhouette outlines as a predictor of landscape preference, Journal of Environmental Psychology, 24, 2, 247-255 (2004) · doi:10.1016/j.jenvp.2003.12.004
[5] Gonçalves, W. N.; Bruno, O. M., Combining fractal and deterministic walkers for texture analysis and classification, Pattern Recognition, 46, 11, 2953-2968 (2013) · Zbl 1326.68243 · doi:10.1016/j.patcog.2013.03.012
[6] Zuñiga, A. G.; Florindo, J. B.; Bruno, O. M., Gabor wavelets combined with volumetric fractal dimension applied to texture analysis, Pattern Recognition Letters, 36, 135-143 (2014) · doi:10.1016/j.patrec.2013.09.023
[7] Chang, S.; Mao, S.-T.; Hu, S.-J.; Lin, W.-C.; Cheng, C.-L., Studies of detrusor-sphincter synergia and dyssynergia during micturition in rats via fractional Brownian motion, IEEE Transactions on Biomedical Engineering, 47, 8, 1066-1073 (2000) · doi:10.1109/10.855934
[8] Chang, S.; Hu, S.-J.; Lin, W.-C., Fractal dynamics and synchronization of rhythms in urodynamics of female Wistar rats, Journal of Neuroscience Methods, 139, 2, 271-279 (2004) · doi:10.1016/j.jneumeth.2004.05.006
[9] Chang, S.; Li, S.-J.; Chiang, M.-J.; Hu, S.-J.; Hsyu, M.-C., Fractal dimension estimation via spectral distribution function and its application to physiological signals, IEEE Transactions on Biomedical Engineering, 54, 10, 1895-1898 (2007) · doi:10.1109/TBME.2007.894731
[10] Chang, S.; Hsyu, M.-C.; Cheng, H.-Y.; Hsieh, S.-H., Synergic co-activation of muscles in elbow flexion via fractional Brownian motion, The Chinese Journal of Physiology, 51, 6, 376-386 (2008)
[11] Chang, S., Physiological rhythms, dynamical diseases and acupuncture, The Chinese Journal of Physiology, 53, 2, 77-90 (2010)
[12] Chang, S., Fractional Brownian motion in biomedical signal processing, physiology, and modern physics, Proceedings of the 5th International Conference on Bioinformatics and Biomedical Engineering (iCBBE ’11) · doi:10.1109/icbbe.2011.5780232
[13] Huang, P.-W.; Lee, C.-H., Automatic classification for pathological prostate images based on fractal analysis, IEEE Transactions on Medical Imaging, 28, 7, 1037-1050 (2009) · doi:10.1109/TMI.2009.2012704
[14] Lin, P.-L.; Huang, P.-W.; Lee, C.-H.; Wu, M.-T., Automatic classification for solitary pulmonary nodule in CT image by fractal analysis based on fractional Brownian motion model, Pattern Recognition, 46, 12, 3279-3287 (2013) · doi:10.1016/j.patcog.2013.06.017
[15] Fernández-Martínez, M.; Sánchez-Granero, M. A.; Segovia, J. E. T., Measuring the self-similarity exponent in Lévy stable processes of financial time series, Physica A: Statistical Mechanics and Its Applications, 392, 21, 5330-5345 (2013) · doi:10.1016/j.physa.2013.06.026
[16] Rostek, S.; Schöbel, R., A note on the use of fractional Brownian motion for financial modeling, Economic Modelling, 30, 30-35 (2013) · doi:10.1016/j.econmod.2012.09.003
[17] Domino, K., The use of the Hurst exponent to investigate the global maximum of the Warsaw Stock Exchange WIG20 index, Physica A: Statistical Mechanics and Its Applications, 391, 1-2, 156-169 (2012) · doi:10.1016/j.physa.2011.06.062
[18] Rejichi, I. Z.; Aloui, C., Hurst exponent behavior and assessment of the MENA stock markets efficiency, Research in International Business and Finance, 26, 3, 353-370 (2012) · doi:10.1016/j.ribaf.2012.01.005
[19] Gao, J.; Hu, J.; Mao, X.; Perc, M., Culturomics meets random fractal theory Insights into long-range correlations of social and natural phenomena over the past two centuries, Journal of the Royal Society Interface, 9, 73, 1956-1964 (2012) · doi:10.1098/rsif.2011.0846
[20] Petersen, A. M.; Tenenbaum, J. N.; Havlin, S.; Stanley, H. E.; Perc, M., Languages cool as they expand: allometric scaling and the decreasing need for new words, Scientific Reports, 2, 943 (2012) · doi:10.1038/srep00943
[21] Perc, M., Evolution of the most common English words and phrases over the centuries, Journal of the Royal Society Interface, 9, 77, 3323-3328 (2012) · doi:10.1098/rsif.2012.0491
[22] Perc, M., Self-organization of progress across the century of physics, Scientific Reports, 3, 1720 (2013) · doi:10.1038/srep01720
[23] Bruce, E. N., Biomedical Signal Processing and Signal Modeling (2001), New York, NY, USA: John Wiley & Sons, New York, NY, USA
[24] Sarkar, N.; Chaudhuri, B. B., An efficient approach to estimate fractal dimension of textural images, Pattern Recognition, 25, 9, 1035-1041 (1992) · doi:10.1016/0031-3203(92)90066-R
[25] Chen, S. S.; Keller, J. M.; Crownover, R. M., On the calculation of fractal features from images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 15, 10, 1087-1090 (1993) · doi:10.1109/34.254066
[26] Sarkar, N.; Chauduri, B. B., An efficient differential box-counting approach to compute fractal dimension of image, IEEE Transactions on Systems, Man and Cybernetics, 24, 1, 115-120 (1994) · doi:10.1109/21.259692
[27] Jin, X. C.; Ong, S. H.; Jayasooriah, A practical method for estimating fractal dimension, Pattern Recognition Letters, 16, 5, 457-464 (1995) · Zbl 0939.68818
[28] Falconer, K., Fractal Geometry: Mathematical Foundations and Applications (1990), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0689.28003
[29] Lundahl, T.; Ohley, W. J.; Kay, S. M.; Siffert, R., Fractional Brownian motion: a maximum likelihood estimator and its application to image texture, IEEE Transactions on Medical Imaging, 5, 3, 152-161 (1986) · doi:10.1109/TMI.1986.4307764
[30] Flandrin, P., On the spectrum of fractional Brownian motions, IEEE Transactions on Information Theory, 35, 1, 197-199 (1989) · doi:10.1109/18.42195
[31] Mandelbrot, B. B.; van Ness, J. W., Fractional Brownian motions, fractional noises and applications, SIAM Review, 10, 4, 422-437 (1968) · Zbl 0179.47801 · doi:10.1137/1010093
[32] Chang, Y.-C.; Chang, S., A fast estimation algorithm on the hurst parameter of discrete-time fractional Brownian motion, IEEE Transactions on Signal Processing, 50, 3, 554-559 (2002) · Zbl 1369.60055 · doi:10.1109/78.984735
[33] Liu, S.-C.; Chang, S., Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification, IEEE Transactions on Image Processing, 6, 8, 1176-1184 (1997) · doi:10.1109/83.605414
[34] Taqqu, M. S.; Teverovsky, V.; Willinger, W., Estimators for long-range dependence: an empirical study, Fractals, 3, 4, 785-798 (1995) · Zbl 0864.62061 · doi:10.1142/S0218348X95000692
[35] Beran, J., Statistics for Long-Memory Processes (1994), New York, NY, USA: Chapman & Hall, New York, NY, USA · Zbl 0869.60045
[36] Chang, Y.-C.; Chen, L.-H.; Lai, L.-C.; Chang, C.-M., An efficient variance estimator for the Hurst exponent of discrete-time fractional Gaussian noise, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E95-A, 9, 1506-1511 (2012)
[37] Chang, Y.-C.; Lai, L.-C.; Chen, L.-H.; Chang, C.-M.; Chueh, C.-C., A Hurst exponent estimator based on autoregressive power spectrum estimation with order selection, Bio-Medical Materials and Engineering, 24, 1, 1041-1051 (2014) · doi:10.3233/BME-130902
[38] Kay, S. M., Modern Spectral Estimation: Theory & Application (1988), Englewood Cliffs, NJ, USA: Prentice-Hall, Englewood Cliffs, NJ, USA · Zbl 0658.62108
[39] Haykin, S., Modern Filters (1989), New York, NY, USA: Macmillan, New York, NY, USA
[40] Samorodnitsky, G.; Taqqu, M. S., Stable Non-Gaussian Random Processes (1994), New York, NY, USA: Chapman & Hall, New York, NY, USA · Zbl 0925.60027
[41] Schilling, R. J.; Harris, S. L., Applied Numerical Methods for Engineers: Using MATLAB and C (2000), New York, NY, USA: Brooks/Cole, New York, NY, USA
[42] Chang, Y.-C., N-dimension golden section search: its variants and limitations, Proceedings of the 2nd International Conference on Biomedical Engineering and Informatics (BMEI ’09) · doi:10.1109/BMEI.2009.5304779
[43] Kay, S. M., Fundamentals of Statistical Signal Processing: Estimation Theory (1993), Englewood Cliffs, NJ, USA: Prentice-Hall, Englewood Cliffs, NJ, USA · Zbl 0803.62002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.